Journal of Low Temperature Physics

, Volume 78, Issue 1–2, pp 41–50 | Cite as

Niboium-titanium nitride thin films for superconducting rf accelerator cavities

  • R. Di Leo
  • A. Nigro
  • G. Nobile
  • R. Vaglio


The development of sputtering-magnetron techniques makes possible the manufacturing of thin-film coated rf cavities for high-energy accelerators of various superconducting alloys or compounds. In this context high-quality (Nb1−xTix)N films have been produced by dc magnetron sputtering and carefully characterized. These films, for x≤0.5, exhibit a critical temperature Tc as high as NbN (Tc=17 K) but show a markedly lower normal state resistivity. The calculated BCS surface impedance of the films is also lower than for NbN. The overall properties of the (Nb1−xTix)N films are compared with those of other superconductors, and the suitability of this material for the production of superconducting sputter-coated copper cavities for particle physics accelerators is demonstrated. The potential interest of (Nb1−xTix)N films for superconducting electronics is also briefly outlined.


Copper Thin Film Nitride Normal State Critical Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings of the Second Workshop on r.f. Superconductivity, H. Lengeler, ed. (Geneva, Switzerland, 1984).Google Scholar
  2. 2.
    Proceedings of the Third Workshop on r.f. Superconductivity, K. W. Shepard, ed. (Argonne, Illinois, 1987).Google Scholar
  3. 3.
    C. Benvenuti, N. Circelli, and M. Hauer,Appl. Phys. Lett. 45, 583 (1984).Google Scholar
  4. 4.
    C. Benvenuti, N. Circelli, M. Hauer, and W. Weingarten,IEEE Trans. Magn. MAG-21, 153 (1985).Google Scholar
  5. 5.
    C. Gladstone, M. A. Jenser, and J. R. Shrieffer, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969).Google Scholar
  6. 6.
    M. Tigner and H. Padamsee, inProceedings of the S.L.A.C. Summer Particle Accelerators (1982).Google Scholar
  7. 7.
    M. Tinkman, inSuperconductivity (Gordon and Breach, New York, 1965).Google Scholar
  8. 8.
    J. Halbritter, inProceedings of the Second Workshop on r.f. Superconductivity, H. Lengeler, ed. (Geneva, Switzerland, 1984), p. 427.Google Scholar
  9. 9.
    S. V. Vonsovsky, Yu. A. Izyumov, and E. Z. Kurmaev, inSuperconductivity of Transition Metals (Springer-Verlag, Berlin, 1985).Google Scholar
  10. 10.
    R. T. Kampwirth and K. E. Gray,IEEE Trans. Magn. MAG-17, 565 (1981).Google Scholar
  11. 11.
    D. Dew-Hughes and R. Jones,Appl. Phys. Lett. 36, 856 (1980).Google Scholar
  12. 12.
    A. Nigro, G. Nobile, M. G. Rubino, and R. Vaglio,Phys. Rev. B 37, 3970 (1988).Google Scholar
  13. 13.
    B. O. Johansson, J. E. Sundgren, J. E. Green, A. Rockett, and S. A. Barnett,J. Vac. Sci. Technol. A 3, 303 (1985).Google Scholar
  14. 14.
    A. Nigro, G. Nobile, V. Palmieri, G. Rubino, and R. Vaglio,Physica Scripta 38, 483 (1988).Google Scholar
  15. 15.
    A. Nigro, G. Nobile, V. Palmieri, and R. Vaglio,Adv. Cryog. Eng. 34, 813 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • R. Di Leo
    • 1
  • A. Nigro
    • 1
  • G. Nobile
    • 1
  • R. Vaglio
    • 1
  1. 1.Dipartimento di FisicaUniversità di SalernoBaronissi (SA)Italy

Personalised recommendations