Skip to main content
Log in

The wall energy and the critical current of an anisotropic high-temperature superconductor using modified Ginzburg-Landau theory

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The modified Ginzburg-Landau theory (MGL) for strongly anisotropic high-temperature superconductors (HTS's) is reviewed, and the MGL equations are rederived and used in solving two important fundamental problems. The first one concerns the evaluation of the domain-wall energy problem by a complete solution of the derived equations. The modified free energy functional is used to calculate the maximum supercurrents in both HTS's and the conventional superconductors. Our calculations show that the surface energy vanishes at the critical value of the GL parameter\(\kappa _c = \left( {{1 \mathord{\left/ {\vphantom {1 {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }}} \right)\left\{ {\left( {1 - M} \right)\left( {1 + \left( {{M \mathord{\left/ {\vphantom {M 3}} \right. \kern-\nulldelimiterspace} 3}} \right)} \right)} \right\}^{1/2} \), where 0≤M<1. Therefore, the transformation from type II to type I superconductivity is possible at temperatures very close to the transition critical one, at which κ(T) becomes zero. The generalized formulas of the superconducting current allowed us to calculate the maximum supercurrents for both the HTS's and the conventional one. The possible maximum currents are anisotropic and have higher values for HTS's. Our results are in good agreement with the related theoretical works as well as with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Bednorz and K. A. Müller,Z. Phys. B 64, 189 (1986).

    Google Scholar 

  2. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu,Phys. Rev. Lett. 58, 908 (1987); T. Wada, N. Suzuki, T. Maeda, A. Maeda, S. Uchida, K. Uchinokura, and S. Tanaka,Phys. Rev. B 38, 7080 (1988).

    Google Scholar 

  3. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, K. Togano, H. Kumakura, M. Uehara, S. Ikeda, K. Ogawa, S. Horichi, and Y. Matsui,Physica C 153–155, 602 (1988); H. Maeda, Y. Tanaka, N. Fukutomi, and T. Asano,Jpn. J. Appl. Phys. 27, L209 (1988).

    Google Scholar 

  4. S. S. P. Parkin, V. Y. Lee, E. M. Engler, A. I. Nazzal, T. C. Huang, G. Gorman, R. Savoy, and R. Beyers,Phys. Rev. Lett. 60, 2539 (1988); B. Oh, K. Char, A. D. Kent, M. Naito, M. R. Beasely, T. H. Geballe, R. H. Hammond, A. Kapitulnik, and J. M. Graybeal,Phys. Rev. B 37, 7861 (1988); J. B. Torrance and S. S. Parkin,Physics Today 42, p. S22 (1989).

    Google Scholar 

  5. Z. Z. Sheng, A. M. Hermann, A. El Ali, C. Almasan, J. Estrada, T. Datta, and R. J. Matson,Phys. Rev. Lett. 60, 937 (1988).

    Google Scholar 

  6. H. Küpfer, I. Apfelstedt, W. Schaüer, R. Flükiger, R. Meier-Mirmer, and H. Wühl,Z. Phys. B 69, 159 (1987); Y. Hideka, Y. Enomoto, M. Suzuki, M. Oda, A. Katsui, and T. Murakami,Jpn. J. Appl. Phys. 26, L726 (1987); D. O. Welch, M. Suenaga, and T. Asano,Phys. Rev. B 36, 2390 (1987); H. Noel, P. Gougeon, J. Padiou, J. C. Levet, M. Potel, O. Laborde, and P. Monceau,Solid State Commun. 63, 915 (1987).

    Google Scholar 

  7. S. Lundquist, E. Tossatti, M. P. Tosi, and Y. Lu, eds.Proceedings of the Adriatico Research Conference on High Temperature Superconductivity (World Scientific, Singapore, 1987).

    Google Scholar 

  8. J. J. Nuemeier, Y. Dalichaouch, J. M. Ferreira, R. R. Hake, B. W. Lee, M. B. Maple, M. S. Torikachivili, K. N. Yang, and H. Zhou,Appl. Phys. Lett. 51, 371 (1987).

    Google Scholar 

  9. T. R. Dinger, T. K. Worthington, W. J. Gallagher, and R. L. Sandstrom,Phys. Rev. Lett. 58, 2687 (1987).

    Google Scholar 

  10. A. Sulpice, P. Lejay, R. Tournier, and J. Chaussy,Europhys. Lett. 7(4, 365 (1988).

    Google Scholar 

  11. I. A. Campbell, L. Frucher, C. Giovannelli, M. Ousse'na, and S. Senaussi (to appear).

  12. P. Chaudhari, R. H. Koch, R. B. Laibowitz, T. R. McGuire, and R. J. Gambino,Phys. Rev. Lett. 58, 2684 (1987).

    Google Scholar 

  13. V. Enomoto, T. Murakami, M. Suzuki, and K. Moriwaki,Jpn. Appl. Phys. 26, 1248 (1987).

    Google Scholar 

  14. V. L. Ginzburg,Physica C 153–155, 1617 (1988).

    Google Scholar 

  15. L. N. Bulaevskii, V. L. Ginzburg, and A. A. Sobyanin,Physica C 125, 378 (1988); erratum,156, 652 (1988).

    Google Scholar 

  16. V. L. Ginzburg and L. D. Landau,Zh. Eksp. Teor. Fiz. 20, 1064 (1950); L. P. Gor'kov and T. K. Melik-Barkhuadrov,Zh. Eksp. Theor. Fiz. 45, 1493 (1963); I. E. Dzyaloshinskii and E. I. Kats,Zh. Eksp. Teor. Fiz. 55, 338 (1986).

    Google Scholar 

  17. V. L. Ginzburg and A. A. Sobyanin,J. Low Temp. Phys. 49, 509 (1982).

    Google Scholar 

  18. L. P. Gor'kov and N. B. Kopin,Yspekh. Fiz. Nayk. 156, 117 (1988).

    Google Scholar 

  19. D. Saint-James, G. Sarma, and E. J. Thomson, inType II Superconductivity (Pergamon Press, Oxford, 1969), chap. 2.

    Google Scholar 

  20. F. London, inSuperfluids, vol. 1:Macroscopic Theory of Superconductivity (New York, John Wiley & Sons, 1950; reprinted: Dover Publications Inc., New York, 1961).

    Google Scholar 

  21. R. P. Hübener, inMagnetic Flux Structure in Superconductors (Springer-Verlag, Berlin, 1979), chap. 2; M. Tinkham, inIntroduction to Superconductivity (McGraw-Hill, New York, 1975), chap. 4.

    Google Scholar 

  22. M. G. Alexander,Phys. Rev. B 38, 9194 (1988).

    Google Scholar 

  23. K. S. Aleksandrov, A. D. Vasil'ev, S. A. Zvegintsev, M. I. Petrov, and B. P. Khrustalev,Sov. Phys. JETP Lett. 47, 562 (1988).

    Google Scholar 

  24. L. Lu, B.-H. Ma, S.-Y. Lin, H.-M. Duan, and D.-L. Zhang,Europhys. Lett. 7, 555 (1988).

    Google Scholar 

  25. L. Fruchter, C. Giovannella, G. Collin, and I. A. Campbell,Physica C 156, 69 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shehata, L.N. The wall energy and the critical current of an anisotropic high-temperature superconductor using modified Ginzburg-Landau theory. J Low Temp Phys 78, 25–40 (1990). https://doi.org/10.1007/BF00682107

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682107

Keywords

Navigation