Advertisement

Journal of Low Temperature Physics

, Volume 78, Issue 1–2, pp 13–24 | Cite as

Dipolar magnetic order in the rare earth ethyl sulfates

  • Jingchun Xu
  • M. R. Roser
  • L. R. Corruccini
Article

Abstract

The magnetic ground states of the ethyl sulfates of Nd, Gd, Ho, and Er have been determined by dc susceptibility measurements and found to agree with those predicted using (where possible) the classical Luttinger-Tisza theory. Ytterbium ethyl sulfate is not observed to order at temperatures above 6.5 mK. The observed transition temperatures scale roughly with the magnitude of the calculated ground state energy. The low-temperature paramagnetic susceptibility of Gd ethyl sulfate agrees qualitatively with a theoretical prediction based on experimental crystal-field parameters.

Keywords

Sulfate Ethyl Transition Temperature Rare Earth State Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Cooke, D. T. Edmonds, F. R. McKim, and W. P. Wolf,Proc. Roy. Soc. A 252, 246 (1959).Google Scholar
  2. 2.
    A. H. Cooke, D. T. Edmonds, C. B. P. Finn, and W. P. Wolf,Proc. Roy. Soc. A 306, 335 (1968).Google Scholar
  3. 3.
    R. F. Wielinga, Thesis, Leiden (1968).Google Scholar
  4. 4.
    R. Frowein and J. Kötzler,Z. Physik B 25, 279 (1976).Google Scholar
  5. 5.
    M. T. Hirvonen, T. E. Katila, K. J. Riski, M. A. Teplov, B. Z. Malkin, N. E. Phillips, and Marilyn Wun,Phys. Rev. B 11, 4652 (1975).Google Scholar
  6. 6.
    G. H. Bellesis, S. Simizu, and S. A. Friedberg,Jap. J. Appl. Phys. 26, Suppl. 3, 811 (1987).Google Scholar
  7. 7.
    R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Giauque,J. Chem. Phys. 65, 4724 (1976).Google Scholar
  8. 8.
    R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Giauque,J. Chem. Phys. 68, 169 (1978).Google Scholar
  9. 9.
    P. H. E. Meijer,Physica 95B, 287 (1978).Google Scholar
  10. 10.
    J. Felsteiner and A. Rabinovitch,Solid State Commun. 7, 1649 (1969).Google Scholar
  11. 11.
    M. Marrenga and T. Niemeijer,Physica 78, 469 (1974).Google Scholar
  12. 12.
    E. Lagendijk, H. W. J. Blöte, and W. J. Huiskamp,Physica 61, 220 (1972).Google Scholar
  13. 13.
    L. E. Erikson,Phys. Rev. 143, 295 (1966).Google Scholar
  14. 14.
    K. Andres and J. H. Wernick,Rev. Sci. Instrum. 44, 1186 (1973).Google Scholar
  15. 15.
    D. I. Gordon, R. H. Lundsten, R. A. Chiarodo, and H. H. Helms, Jr.,IEEE Trans. Magn. Mag-4, 397 (1968).Google Scholar
  16. 16.
    A. Abragam and B. Bleaney,Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970), Chap. 5.Google Scholar
  17. 17.
    R. J. Elliott and K. W. Stevens,Proc. Roy. Soc. A 219, 387 (1953).Google Scholar
  18. 18.
    R. E. Gerkin and D. L. Thorsell,J. Chem. Phys. 57, 2665 (1972).Google Scholar
  19. 19.
    A. T. Skjeltorp, C. A. Catanese, H. E. Meissner, and W. P. Wolf,Phys. Rev. B 7, 2062 (1973).Google Scholar
  20. 20.
    W. P. Wolf, M. J. M. Leask, B. Mangum, and A. F. J. Wyatt,J. Phys. Soc. Jpn. Suppl. B 17, 487 (1973).Google Scholar
  21. 21.
    J. H. Van Vleck,Theory of Electric and Magnetic Susceptibilities (Clarendon, Oxford, 1932).Google Scholar
  22. 22.
    A. H. Cooke, R. Lazenby, and M. J. M. Leask,Proc. Phys. Soc. 85, 767 (1965).Google Scholar
  23. 23.
    J. Xu and L. R. Corruccini,Jap. J. Appl. Phys. 26, Suppl. 3, 813 (1987).Google Scholar
  24. 24.
    C. A. Catanese and H. E. Meissner,Phys. Rev. B 8, 2060 (1973).Google Scholar
  25. 25.
    J. Felsteiner and Z. Friedman,Phys. Rev. B 7, 1078 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Jingchun Xu
    • 1
  • M. R. Roser
    • 1
  • L. R. Corruccini
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaDavis

Personalised recommendations