Skip to main content
Log in

Collective modes and sound propagation in a magnetic field in superfluid3He-B

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A high-resolution, ultrasonic (12–89 MHz) acoustic impedance technique has been used to investigate the order parameter collective modes in superfluid3He-B over a pressure range of 0–15 bar and in magnetic fields up to 180 mT. In agreement with earlier experiments, theJ=2 real squashing mode has been observed to split into five components in small magnetic fields. However, contrary to earlier theoretical estimates, the Zeeman shifts have been found to become extremely nonlinear as the magnetic field is increased. The extent of this nonlinearity is largest at low pressures and at temperatures close toT c. In comparison with recent theoretical work, the nonlinear Zeeman shifts may be explained as a result of two effects. First, there is a significant distortion of the B-phase energy gap in large magnetic fields. Second, there is an important coupling between the sameJ zsubstates of the differentJ modes. In this sense the nonlinear evolution of the real squashing mode constitutes the observation of the Paschen-Back effect in3He-B. A comparison of the observed Zeeman shifts with theoretical expressions has yielded information about particle-particle and particle-hole interaction effects in the superfluid. In the limitT → 0 and above a threshold field, the real squashing mode has been found to possess additional structure. TheJ z=0 substate has been observed to split into a doublet. The separation between the two components of the doublet is of the order of 100–200 kHz and remains independent of the magnetic field. The origin of the doublet may be understood in terms of a recent theory which postulates a texture-dependent collective mode frequency. Further, at extremely small fields the effects due to dispersion of the real squashing modes have been found to be important. The magnitude of the dispersion-induced mode splitting in zero field is found to be consistent with theoretical predictions. TheJ=2 squashing mode has also been studied in the presence of a magnetic field. TheJ z=0 state of the squashing mode is observed to shift to lower temperatures in a magnetic field. An additional field dependence of the observed acoustic impedance is interpreted as the evolution of theJ z=−1, −2 states, but appears to be inconsistent with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975).

    Google Scholar 

  2. J. C. Wheatley, inProgress in Low Temperature Physics, D. F. Brewer, ed. (North-Holland, Amsterdam, 1978), Vol. VIIa, p. 1.

    Google Scholar 

  3. D. M. Lee and R. C. Richardson, inThe Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, ed. (Wiley, New York, 1978), p. 287.

    Google Scholar 

  4. W. P. Halperin,Physica 109B, 1596 (1982).

    Google Scholar 

  5. J. B. Ketterson, B. S. Shivaram, M. W. Meisel, B. K. Sarma, and W. P. Halperin,AIP Conf. Proc. 103, 288 (1983).

    Google Scholar 

  6. D. B. Mast, B. K. Sarma, J. R. Owers-Bradley, I. D. Clader, J. B. Ketterson, and W. P. Halperin,Phys. Rev. Lett. 45, 266 (1980).

    Google Scholar 

  7. I. D. Calder, D. B. Mast, B. K. Sarma, J. R. Owers-Bradley, J. B. Ketterson, and W. P. Halperin,Phys. Rev. Lett. 45, 1866 (1980).

    Google Scholar 

  8. D. B. Mast, J. R. Owers-Bradley, W. P. Halperin, I. D. Calder, B. K. Sarma, and J. B. Ketterson,Physica 107B, 685 (1981).

    Google Scholar 

  9. D. B. Mast, Ph.D. Thesis, Northwestern University, Evanston, Illinois (1982), unpublished.

    Google Scholar 

  10. O. Avenel, E. Varoquaux, and E. Ebisawa,Phys. Rev. Lett. 45, 1982 (1980).

    Google Scholar 

  11. M. W. Meisel, B. S. Shivaram, B. K. Sarma, D. B. Mast, J. B. Ketterson, and W. P. Halperin,Phys. Rev. B 27, 6982 (1983).

    Google Scholar 

  12. B. S. Shivaram, M. W. Meisel, B. K. Sarma, D. B. Mast, W. P. Halperin, and J. B. Ketterson,Phys. Rev. Lett. 49, 1646 (1982).

    Google Scholar 

  13. B. S. Shivaram, M. W. Meisel, B. K. Sarma, W. P. Halperin, and J. B. Ketterson,Phys. Rev. Lett. 50, 1070 (1983).

    Google Scholar 

  14. L. Tewordt and N. Schopohl,J. Low Temp. Phys. 37, 421 (1979).

    Google Scholar 

  15. Y. Hasegawa and H. Namaizawa,Prog. Theor. Phys. 67, 389 (1982);Prog. Theor. Phys. 68, 345 (1982).

    Google Scholar 

  16. J. A. Sauls and J. W. Serene,Phys. Rev. Lett. 49, 1183 (1982).

    Google Scholar 

  17. N. Schopohl, M. Warnke, and L. Tewordt,Phys. Rev. Lett. 50, 1066 (1983).

    Google Scholar 

  18. R. Fishman and J. A. Sauls, preprint.

  19. G. E. Volovik,JETP Lett. 39, 365 (1984); G. E. Volovik and M. V. Khazan,Sov. Phys. TETP,60, 276 (1985).

    Google Scholar 

  20. V. P. Mineev,Sov. Phys. JETP,61, 297 (1985); V. P. Mineev and G. E. Volovik,Physica 126B, 453 (1984).

    Google Scholar 

  21. A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975).

    Google Scholar 

  22. D. D. Osheroff, R. C. Richardson, and D. M. Lee,Phys. Rev. Lett. 28, 885 (1972).

    Google Scholar 

  23. R. Balian and N. R. Werthamer,Phys. Rev. 131, 1553 (1962).

    Google Scholar 

  24. H. Smith, W. F. Brinkman, and S. Engelsberg,Phys. Rev. B 15, 199 (1977).

    Google Scholar 

  25. L. Tewordt and D. Einzel,Phys. Lett. 56A, 97 (1976).

    Google Scholar 

  26. D. N. Paulson, R. T. Johnson, and J. C. Wheatley,Phys. Rev. Lett. 30, 829 (1973).

    Google Scholar 

  27. D. N. Paulson, R. L. Kleinberg, and J. C. Wheatley,J. Low Temp. Phys. 23, 725 (1976).

    Google Scholar 

  28. P. Wölfle,Phys. Rev. B 14, 89 (1976).

    Google Scholar 

  29. K. Maki,J. Low Temp. Phys. 16, 465 (1974).

    Google Scholar 

  30. J. W. Serene, Ph.D. Thesis, Cornell University, Ithaca, New York (1974), unpublished.

    Google Scholar 

  31. P. R. Roach, B. M. Abraham, M. Kuchnir, and J. B. Ketterson,Phys. Rev. Lett. 39, 711 (1975).

    Google Scholar 

  32. K. Maki,J. Low Temp. Phys. 24, 755 (1976).

    Google Scholar 

  33. P. Wölfle,Physica 90B, 96 (1977).

    Google Scholar 

  34. R. W. Giannetta, A. Ahonen, E. Polturak, J. Saunders, E. K. Zeise, R. C. Richardson, and D. M. Lee,Phys. Rev. Lett. 45, 262 (1980).

    Google Scholar 

  35. V. E. Koch and P. Wölfle,Phys. Rev. Lett. 46, 486 (1981).

    Google Scholar 

  36. O. Avenel, L. Piche, W. M. Saslow, E. Varoquaux, and R. Combescot,Phys. Rev. Lett. 47, 803 (1981).

    Google Scholar 

  37. P. R. Roach and J. B. Ketterson,Phys. Rev. Lett. 39, 736 (1976).

    Google Scholar 

  38. J. B. Ketterson, M. W. Meisel, B. S. Shivaram, B. K. Sarma, and W. P. Halperin, inProceedings IEEE Ultrasonics Symposium (1983), p. 1074.

  39. J. W. Serene and D. Rainer,Phys. Rep. 101, 221 (1984).

    Google Scholar 

  40. P. Wölfle, inProgress in Low Temperature Physics, Vol. VIIa, D. F. Brewer, ed. (North-Holland, Amsterdam, 1978), p. 191.

    Google Scholar 

  41. J. A. Sauls, and J. W. Serene,Phys. Rev. B 23, 4798 (1981).

    Google Scholar 

  42. K. Nagai,Prog. Theor. Phys. 54, 1 (1975).

    Google Scholar 

  43. P. N. Brusov and V. N. Popov,Sov. Phys. JETP 51, 1217 (1980).

    Google Scholar 

  44. R. Combescot,J. Low Temp. Phys. 49, 295 (1982).

    Google Scholar 

  45. B. S. Shivaram, Ph.D. Thesis, Northwestern University, Evanston, Illinois (1984), unpublished.

    Google Scholar 

  46. J. D. Feder, D. O. Edwards, W. J. Gully, K. A. Muething, and H. N. Scholz,Phys. Rev. Lett. 47, 488 (1981).

    Google Scholar 

  47. T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp. Phys. 45, 373 (1981).

    Google Scholar 

  48. E. Polturak, P. G. N. deVegvar, E. K. Zeise, and D. M. Lee,Physica 107B, 687 (1981).

    Google Scholar 

  49. A. A. V. Gibson, J. R. Owers-Bradley, I. D. Calder, J. B. Ketterson, and W. P. Halperin,Rev. Sci. Instrum. 52, 1509 (1981).

    Google Scholar 

  50. G. L. Gooberman,Ultrasonics, Theory and Application (Hart, New York, 1968), p. 61; W. P. Mason,Electrochemical Transducers and Wave Filters, 2nd ed. (Van Nostrand, New York, 1948), p. 403.

    Google Scholar 

  51. M. W. Meisel, Ph. D. Thesis, Northwestern University, Evanston, Illinois (1983), unpublished.

    Google Scholar 

  52. H. Pleiner and H. Brand,Phys. Rev. B 28, 3782 (1983).

    Google Scholar 

  53. T. A. Alvesalo, T. Haavasoja, M. T. Mannien, and A. T. Soinne,Phys. Rev. Lett. 44, 1076 (1980); T. Havaasoja, Ph.D. Thesis, Helsinki University of Technology (1980), unpublished.

    Google Scholar 

  54. D. S. Greywall and P. A. Busch,Phys. Rev. Lett. 49, 146 (1982); D. S. Greywall,Phys. Rev. B 27, 2747 (1983).

    Google Scholar 

  55. A. L. Fetter and J. D. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971), § 51; M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1975), p. 36.

    Google Scholar 

  56. R. D. Evans,The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 177.

    Google Scholar 

  57. N. Schopohl,J. Low Temp. Phys. 49, 347 (1982).

    Google Scholar 

  58. R. Hoyt, H. N. Scholz, and D. O. Edwards,Physica 107B, 287 (1981); H. N. Scholz, Ph.D. Thesis, Ohio State University (1981), unpublished.

    Google Scholar 

  59. P. W. Anderson and W. F. Brinkman, inThe Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978), p. 177.

    Google Scholar 

  60. M. Baldo, G. Giansiracusa, U. Lombardo, R. Pucci, and G. Petronio,Phys. Lett. 65A, 418 (1978).

    Google Scholar 

  61. P. Wölfle, personal communication (1983).

  62. N. Schopohl and L. Tewordt,J. Low Temp. Phys. 45, 67 (1981).

    Google Scholar 

  63. J. A. Sauls and J. W. Serene, inProceedings of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), p. 775.

    Google Scholar 

  64. O. Avenel, L. Piche, and E. Varoquaux,Physica 108B, 693 (1981).

    Google Scholar 

  65. M. E. Daniels, E. R. Dobbs, J. Saunders, and P. L. Ward,Phys. Rev. B 27, 6988 (1983).

    Google Scholar 

  66. J. B. Ketterson,Phys. Rev. Lett. 50, 259 (1983).

    Google Scholar 

  67. S. A. Bogacz and J. B. Ketterson, inProceedings of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), p. 1227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivaram, B.S., Meisel, M.W., Sarma, B.K. et al. Collective modes and sound propagation in a magnetic field in superfluid3He-B. J Low Temp Phys 63, 57–113 (1986). https://doi.org/10.1007/BF00682064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682064

Keywords

Navigation