Advertisement

Journal of Low Temperature Physics

, Volume 47, Issue 1–2, pp 111–121 | Cite as

Surface structure of high-T c Nb3Ge films

  • S. Kuriki
  • T. Ohora
Article

Abstract

We have studied the surface structure of rf-sputtered Nb3Ge films by means of reflection electron diffraction and Auger electron spectroscopy. It is found that a tetragonal Nb5Ge3 phase exists, being partly disordered, at the surface of high-T c films, whereas A15 phase is predominant in the body of the film as proved by x-ray diffraction. The tetragonal surface phase is replaced by an amorphous phase in thin films of <1000 Å, where reducedT c 's as compared with those of thick films are found. Single A15 phase occurs at the surface of Ge-deficient films which have lowT c 's. Auger analysis has shown a pronounced Ge-rich layer with a depth of 60–100 Å, depending on film composition and thickness. At the top of the surface layer, Ge is enriched beyond a composition corresponding to Nb5Ge3. It is inferred that the Ge-rich layer is responsible for formation of the tetragonal phase.

Keywords

Auger Electron Diffraction Surface Structure Thick Film Tetragonal Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Gavaler,Appl. Phys. Lett. 23, 480 (1973).Google Scholar
  2. 2.
    L. R. Testardi, J. H. Wernick, and W. A. Royer,Solid State Commun. 15, 1 (1974).Google Scholar
  3. 3.
    R. A. Sigsbee,Appl. Phys. lett. 29, 211 (1976).Google Scholar
  4. 4.
    A. B. Hallak, R. H. Hammond, and T. H. Gaballe,Appl. Phys. Lett. 29, 314 (1976).Google Scholar
  5. 5.
    R. E. Somekh,Phil. Mag. B37, 713 (1978).Google Scholar
  6. 6.
    J. R. Gavaler, M. Ashkin, A. I. Braginski, and A. T. Santhanam,Appl. Phys. Lett. 33, 359 (1978).Google Scholar
  7. 7.
    B. Krevet, W. Schaver, F. Wüchner, and K. Schulze,Appl. Phys. Lett. 36, 704 (1980).Google Scholar
  8. 8.
    A. H. Dayem, T. H. Gaballe, R. B. Zubeck, A. B. Hallak, and G. W. Hull, Jr.,Appl. Phys. Lett. 30, 541 (1977).Google Scholar
  9. 9.
    J. M. Rowell and P. H. Schmidt,Appl. Phys. Lett. 29, 622 (1976).Google Scholar
  10. 10.
    D. F. Moore, R. B. Zubeck, J. M. Rowell, and M. R. Beasley,Phys. Rev. B20, 2721 (1979).Google Scholar
  11. 11.
    D. A. Rogowski and R. Roy,J. Appl. Phys. 47, 4635 (1976).Google Scholar
  12. 12.
    L. T. Tongson, D. A. Rogowski, and B. E. Knox,J. Appl. Phys. 47, 5059 (1976).Google Scholar
  13. 13.
    R. H. Buitrago, L. E. Toth, and A. M. Goldman,J. Appl. Phys. 50, 983 (1979).Google Scholar
  14. 14.
    Y. Tarutani and M. Kudo,Japan, J. Appl. Phys. 16, 509 (1977).Google Scholar
  15. 15.
    E. Haeussler and E. Sauer,Z. Naturforsch. 31a, 1572 (1976).Google Scholar
  16. 16.
    J. R. Gavaler, M. A. Janocko, and C. K. Jones,J. Appl. Phys. 45, 3009 (1974).Google Scholar
  17. 17.
    R. H. Buitrago, L. E. Toth, A. M. Goldman, J. Schwanebeck, and M. Dayan,Appl. Phys. Lett. 32, 341 (1978).Google Scholar
  18. 18.
    S. Kuriki and T. Ohora, unpublished.Google Scholar
  19. 19.
    T. Claesen, J. Ivarsson, and S. E. Rasmussen,J. Appl. Phys. 48, 3998 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • S. Kuriki
    • 1
  • T. Ohora
    • 1
  1. 1.Research Institute of Applied ElectricityHokkaido UniversitySapporoJapan

Personalised recommendations