Skip to main content
Log in

Inhomogeneous broadening of electronic transitions in a liquid helium bubble: The role of shape fluctuations

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent experiments of Grimeset al. [Phys. Rev. B 41, 6366 (1990)] and Parshinet al. [JETP,74, 68 (1992)] demonstrate a substatial broadening in the 1s-1p transition of a single electron trapped in a liquid helium bubble (“bubblonium”) compared to theoretical predictions based on natural radiative linewidth. We show that the larger observed linewidth can be explained by inhomogeneus broadening due to quantum quadrupole fluctuations in the bubble shape. A simple adiabaticity rule for the bubblonium transitions similar to the Franck-Condon principle for molecular transitions is established. Quantitative estimates of the additional inhomogeneous linewidth atT=0 and 2.2 K are provided. The full theoretical linewidth, due to inhomogeneous and homogeneous broadening, has a Voigt-profile shape, and accounts for the data reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Hernandez,Rev. Mod. Phys. 63, 675 (1991).

    Google Scholar 

  2. First experiments with positrons: D. A. L. Paul and R. L. Graham,Phys. Rev. 106, 16 (1957); J. Wackerle and R. Stump,ibid. p. 18.

    Google Scholar 

  3. First experiments with electrons: L. Meyer and F. Reif,Phys. Rev. 110, 279 (1958); G. Careriet al., Nuovo Cimento 13, 186 (1959).

    Google Scholar 

  4. Wigner crystalization on the free surface of liquid helium was discovered in: C. C. Grimes, G. Adams,Phys. Rev. Lett. 42, 795 (1979); A nice photographed of the crystalline mesh is reproduced in: V. B. Shikin and P. Leiderer,Sov. Phys. JETP 54, 92 (1981).

    Google Scholar 

  5. Wigner crystallization on the interface of He3-He4 was discovered in: M. Wanner and P. Leiderer,Phys. Rev. Lett. 42, 315 (1979); also P. Leiderer,Phys. Rev. B 20, 4511 (1979).

    Google Scholar 

  6. D. Kleppner,Ann. Phys. 10(6), 877 (1985).

    Google Scholar 

  7. J. M. Doyleet al., Phys. Rev. Lett. 67, 603 (1991).

    Google Scholar 

  8. P. B. Lerner and I. M. Sokolov,JETP Lett. 44, 644 (1986).

    Google Scholar 

  9. P. B. Lerner and I. M. Sokolov,Z. Physik D 14, 173 (1989).

    Google Scholar 

  10. R. V. Jensen,Phys. Rev. A 30, 386 (1984).

    Google Scholar 

  11. E. Y. Andrei,Phys. Rev. Lett. 52, 1449 (1984).

    Google Scholar 

  12. B. E. Springett, M. H. Cohen, and J. Jortner,Phys. Rev. 159, 183 (1967).

    Google Scholar 

  13. V. S. Edelman,Sov. Phys. Usp. 23, 227 (1980).

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz,Quantum Mechanics (Pergamon, 1983) (see problems to Sec. 33); L. Schiff,Quantum Mechanics (McGraw-Hill, New York, 1968), Ch. 4.15.

  15. C. C. Grimes and G. Adams,Phys. Rev. B 41, 6366 (1990).

    Google Scholar 

  16. A. Ya. Parshin and S. V. Pereverzev,Sov. Phys. JETP 74, 68 (1992).

    Google Scholar 

  17. I. A. Fomin,Study of Optical and Acoustic Phenomena in Quantum Liquids, Ph.D. thesis, ITF Ac. Sci USSR, Moscow (1968);ibid., JETP Lett. 6, 715 (1967).

  18. B. DuVall and V. Celli,Phys. Rev. 180, 276 (1969).

    Google Scholar 

  19. W. B. Fowler and D. L. Dexter,Phys. Rev. 176, 337 (1968).

    Google Scholar 

  20. E. Feenberg and K. C. Hammack,Phys. Rev. 81, 285 (1951). Note that in their Eq. (3) the numerical factor should be 3/2 and not 2/3.

    Google Scholar 

  21. G. F. Bertsch and D. Tomanek,Phys. Rev. C 40, 2749 (1989).

    Google Scholar 

  22. F. R. Young,Cavitation (McGraw-Hill, New York, 1989).

    Google Scholar 

  23. V. G. Levich,Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1962).

    Google Scholar 

  24. A. Bohr and B. R. Mottelson,Nuclear Structure (Benjamin, Menlo Park, CA, 1975), Vol. II.

    Google Scholar 

  25. For clarity we have omitted the linear term in the Hamiltonian due to the electronic energy. This term results in a non-spherical equilibrium shape for bubblonium with an electron in the 1p state. However, we are interested in line broadening effects here, and these are not affected (in first order) since the oscillator frequency is unchanged.

  26. N. A. Jelley,Fundamentals of Nuclear Physics (Cambridge University Press, 1990), p. 41.

  27. Cited in: H. Lamb,Hydrodynamics (Dover, New York, 1945), 6th Edition, p. 475.

    Google Scholar 

  28. This can be expected from the following argument. If bubblonium is modeled by a Three-dimensional cubic box with the same volume as the physical sphere, and the quadrupole scaling transformation as described above Eq. (13) is applied, the change in electronic energy upon deformation can be determined exactly. In this case the exact result equals our result in Eq. (15), the contribution from second-order perturbation theory being zero. For the physical system which is spherical, and not cubic, second-order perturbation may contribute, but we would expect it to be small.

  29. J. M. Eisenberg and W. Greiner,Nuclear Theory (North-Holland, Amsterdam, 1975), p. 53.

    Google Scholar 

  30. G. K. Batchelor,Introduction to Fluid Dynamics (Cambridge University Press, 1967).

  31. J. Poitrenaud and F. I. B. Williams,Phys. Rev. Lett. 29, 1230 (1972);32, 1213(E) (1974).

    Google Scholar 

  32. G. Herzberg,Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, NJ, 1957), Chapter IV, p. 4.

    Google Scholar 

  33. The recommended values for surface tension were taken from: D. O. Edwards and W. F. Saam,Low Temperature Physics, Vol. 7A, 1978, p. 284 [Eqs. (3.9), (3.10)]. The measurements were provided in: Guoet al., Phys. Rev. Lett. 27, 1259 (1971); Zinov'era K. N., S. T. Boldarev,Sov. Phys. JETP 29, 585 (1969).

    Google Scholar 

  34. We extrapolate Parshinet al.'s data16 to zero pressure using Parshinet al.'s own extrapolation in their Fig. 11. We extrapolate Parshinet al.'s data to zero temperature “by eye”, using their Fig. 12. Similarly, we extrapolate Grimeset al.'s data (taken at 1.3 K) to a temperature of 2.2 K using the temperature dependence of Fig. 12 in Ref. 16.

  35. J. Eberly and P. Milonni,Lasers (Pergamon, New York, 1988), Chapter 3.12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerner, P.B., Chadwick, M.B. & Sokolov, I.M. Inhomogeneous broadening of electronic transitions in a liquid helium bubble: The role of shape fluctuations. J Low Temp Phys 90, 319–330 (1993). https://doi.org/10.1007/BF00682005

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682005

Keywords

Navigation