Skip to main content
Log in

On the diffusivity-mobility ratio in ultrathin films of bismuth in the presence of crossed electric and magnetic fields

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Einstein relation is studied for the diffusivity-mobility ratio of the carriers in ultrathin films of bismuth in the presence of crossed electric and magnetic fields at very low temperatures, and the numerical results are presented for McClure and Choi, hybrid, Cohen, Lax, and ellipsoidal parabolic energy bands by formulating the respective modified carrier energy spectra. It is found that this ratio increases with decreasing film thickness, increasing electron concentration, and decreasing magnetic field. The quantum oscillations of the ratio show up much more significantly in the McClure than in the other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sengupta and R. Bhattacharya,J. Phys. Chem. Solids 46, 9 (1985).

    Google Scholar 

  2. D. Shoenberg,Proc. R. Soc. Lond. A 170, 341 (1939).

    Google Scholar 

  3. B. Abeles and S. Mieboom,Phys. Rev. 101, 544 (1956).

    Google Scholar 

  4. M. P. Vechi, J. R. Pereira, and M. S. Dresselhaus,Phys. Rev. 14B, 298 (1976).

    Google Scholar 

  5. J. P. Michenaud, J. Heremans, M. Shayegan, and C. Haumont,Phys. Rev. 26B, 2552 (1982).

    Google Scholar 

  6. B. Lax,Rev. Mod. Phys. 30, 122 (1958).

    Google Scholar 

  7. R. J. Dinger and A. W. Lawson,Phys. Rev. 1, 2418 (1970);3, 253 (1971);7, 5215 (1973).

    Google Scholar 

  8. M. H. Cohen,Phys. Rev. 121, 387 (1961).

    Google Scholar 

  9. S. Takaoka, H. Kawamura, K. Murase, and S. Takano,Phys. Rev. 13B, 1428 (1976).

    Google Scholar 

  10. J. W. McClure and K. H. Choi,Solid State Commun. 21, 1015 (1977).

    Google Scholar 

  11. M. H. Chen and C. C. Wu,J. Low Temp. Phys. 64, 65 (1986).

    Google Scholar 

  12. C. C. Wu and C. J. Lin,J. Low Temp. Phys. 49, 83 (1985).

    Google Scholar 

  13. C. C. Wu and C. J. Lin,J. Low Temp. Phys. 57, 469 (1984).

    Google Scholar 

  14. J. W. McClure and D. Shoenberg,J. Low Temp. Phys. 22, 233 (1976).

    Google Scholar 

  15. J. W. McClure,J. Low Temp. Phys. 25, 527 (1976).

    Google Scholar 

  16. C. C. Wu and C. J. Lin,J. Low Temp. Phys. 57, 467 (1984).

    Google Scholar 

  17. M. Mondal, N. Chatterjee, and K. P. Ghatak,J. Low Temp. Phys. 66, 131 (1987).

    Google Scholar 

  18. S. N. Biswas and K. P. Ghatak,Fizika 18, 121 (1986).

    Google Scholar 

  19. K. P. Ghatak and M. Mondal,Z. Naturforsch. 41, 881 (1986).

    Google Scholar 

  20. A. A. Abrikosov,J. Low Temp. Phys. 8, 315 (1972).

    Google Scholar 

  21. G. G. Emch,J. Math. Phys. 14, 1775 (1973).

    Google Scholar 

  22. S. A. Hope, G. Feat, and P. T. Landsberg,J. Phys. A 14, 2377 (1981).

    Google Scholar 

  23. S. N. Mohammad,J. Phys. C 13, 2685 (1980).

    Google Scholar 

  24. H. Kroemer,IEEE Trans. Electron Devices 25, 850 (1978).

    Google Scholar 

  25. S. T. H. Abidi and S. N. Mohammad,Solid State Electron. 27, 1153 (1984).

    Google Scholar 

  26. P. T. Landsberg,Eur. J. Phys. 2, 213 (1981), and references cited therein.

    Google Scholar 

  27. K. P. Ghatak and M. Mondal,Thin Solid Films D 148, 219 (1987).

    Google Scholar 

  28. E. Spenke,Electronic Semiconductors (McGraw-Hill, 1958), p. 294.

  29. B. R. Nag and A. N. Chakravarti,Phys. Stat. Sol. (a)67, K113 (1981).

    Google Scholar 

  30. M. Mondal and K. P. Ghatak,J. Mag. Mater. 66, 115 (1986).

    Google Scholar 

  31. W. Zawadzki, S. Klahn, and U. Merkt,Phys. Rev. B 33, 6916 (1986).

    Google Scholar 

  32. J. C. Hensel and M. Peter,Phys. Rev. 114, 411 (1959).

    Google Scholar 

  33. R. Dingle,Festkorperprobleme 15, 22–45 (1975).

    Google Scholar 

  34. W. Zawadzki and B. Lax,Phys. Rev. Lett. 16, 1001 (1966).

    Google Scholar 

  35. J. S. Blakemore,Semiconductor Statistics (Pergamon Press, London, 1962), p. 74.

    Google Scholar 

  36. M. Mondal and K. P. Ghatak,Phys. Stat. Sol. (b)126, K41 (1984).

  37. T. I. Kamin and R. S. Muller,Solid State Electron. 10, 423 (1967).

    Google Scholar 

  38. G. D. Hatchel and A. E. Ruchli,IEEE Trans. ED-15, 437 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, M., Chattopadhyay, N. & Ghatak, K.P. On the diffusivity-mobility ratio in ultrathin films of bismuth in the presence of crossed electric and magnetic fields. J Low Temp Phys 73, 321–329 (1988). https://doi.org/10.1007/BF00681985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681985

Keywords

Navigation