Advertisement

Journal of Low Temperature Physics

, Volume 75, Issue 3–4, pp 187–207 | Cite as

Noise in a point-contact dc SQUID

  • Kenneth R. Carroll
  • Ho Jung Paik
Article
  • 27 Downloads

Abstract

Measurements of five variations of a toroidal point-contact dc superconducting quantum interference device (SQUID) are presented. The energy resolution and other parameters of these SQUIDs are examined and compared with the predictions of the Resistively Shunted Junction model. For these SQUIDs, the measured minimum energy resolution was approximately 2×10−30 J/Hz. Excess noise in the point contacts was found to limit the energy resolution of the SQUIDs. A comparison between the typical junction parameters and noise obtained for our niobium-niobium point contacts and those of others is given. TheI–V characteristics of the junctions showed the effects of Joule heating. The white voltage noise spectral density was found to have an approximately parabolic dependence on the average voltage for bias currents larger than the critical current. While this parabolic dependence is consistent with heating effects in the junctions, the amplitude of the noise cannot be explained in terms of a heating model. The low-frequency noise of the point contacts has also been investigated.

Keywords

Point Contact Energy Resolution Voltage Noise Excess Noise Resistively Shunt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Ketchen and J. M. Jaycox,Appl. Phys. Lett. 40, 736 (1982).Google Scholar
  2. 2.
    D. J. Van Harlingen, R. H. Koch, and J. Clarke,Appl. Phys. Lett. 41, 197 (1982).Google Scholar
  3. 3.
    M. B. Ketchen and R. F. Voss,Appl. Phys. Lett. 35, 812 (1979).Google Scholar
  4. 4.
    H. Heffner,Proc. IRE 50, 1604 (1962).Google Scholar
  5. 5.
    H. J. Paik,Nuovo Cimento 55B, 15 (1980).Google Scholar
  6. 6.
    J. N. Hollenhorst and R. P. Giffard,IEEE Trans. Magn. MAG-15, 474 (1979).Google Scholar
  7. 7.
    K. K. Likharev,Rev. Mod. Phys. 51, 101 (1979).Google Scholar
  8. 8.
    J. H. Claassen,J. Appl. Phys. 55, 3367 (1984).Google Scholar
  9. 9.
    J. Clarke, inSQUID '80: Superconducting Quantum Interference Devices and Their Applications, H. D. Hahlbolm and H. Lübbig, eds. (deGruyter, New York, 1980), p. 187.Google Scholar
  10. 10.
    R. H. Mathews, Technical Report, University of Maryland, College Park, Maryland (1980, unpublished).Google Scholar
  11. 11.
    M. G. Castellano and H. J. Paik,Physica B + C 108, 1089 (1981).Google Scholar
  12. 12.
    C. D. Tesche,J. Low Temp. Phys. 47, 385 (1982).Google Scholar
  13. 13.
    K. R. Carroll, Ph.D. Thesis, University of Maryland, College Park, Maryland (1987, unpublished).Google Scholar
  14. 14.
    D. A. Weitz, W. J. Skocpol, and M. Tinkham,J. Appl. Phys. 49, 4873 (1978).Google Scholar
  15. 15.
    L. G. Aslamazov and A. I. Larkhin,JETP Lett. 9, 87 (1969).Google Scholar
  16. 16.
    D. E. McCumber,J. Appl. Phys. 39, 3113 (1968).Google Scholar
  17. 17.
    J. E. Zimmerman, inProceedings of the Applied Superconductivity Conference, IEEE Pub no. 72-CH0682-TABSC (IEEE, New York, 1972), p. 5.Google Scholar
  18. 18.
    R. F. Voss,J. Low Temp. Phys. 42, 151 (1981).Google Scholar
  19. 19.
    K. Yoshida,J. Appl. Phys. 53, 7471 (1982).Google Scholar
  20. 20.
    V. N. Gubankov, K. K. Likharev, and N. M. Margolin,Sov. Phys.-Solid State 14, 819 (1972).Google Scholar
  21. 21.
    T. A. Fulton and L. N. Dunkleberger,J. Appl. Phys. 45, 2283 (1974).Google Scholar
  22. 22.
    C. D. Tesche and J. Clarke,J. Low Temp. Phys. 29, 301 (1977).Google Scholar
  23. 23.
    T. Van Duzer and C. W. Turner,Principles of Superconductive Devices and Circuits (Elsevier-North-Holland, New York, 1981), Chapter 5.Google Scholar
  24. 24.
    R. J. Soulen Jr., private communication.Google Scholar
  25. 25.
    S. O. Rice, inSelected Papers on Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954).Google Scholar
  26. 26.
    S. K. Decker and D. W. Palmer,J. Appl. Phys. 48, 2043 (1977).Google Scholar
  27. 27.
    N. N. Kurdyumov,Sov. Tech. Phys. Lett. 2, 381 (1976).Google Scholar
  28. 28.
    R. F. Voss and J. Clarke,Phys. Rev. B 13, 556 (1976).Google Scholar
  29. 29.
    M. Tinkham, M. Octavio, and W. J. Skocpol,J. Appl. Phys. 48, 1311 (1977).Google Scholar
  30. 30.
    H. Kanter and F. L. Vernon, Jr.,Appl. Phys. Lett. 16, 115 (1970).Google Scholar
  31. 31.
    H. Kanter and F. L. Vernon, Jr.,Phys. Rev. Lett. 25, 588 (1970).Google Scholar
  32. 32.
    J. H. Claassen, Y. Taur, and P. L. Richards,Appl. Phys. Lett. 25, 759 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Kenneth R. Carroll
    • 1
  • Ho Jung Paik
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege Park

Personalised recommendations