Journal of Low Temperature Physics

, Volume 75, Issue 3–4, pp 111–157 | Cite as

Experiments with negative ions in3He superfluids

  • K. K. Nummila
  • J. T. Simola
  • J. S. Korhonen


The interaction between negative ions and 3 He superfluids was studied by using a time-of-flight spectrometer having a 10−3 relative resolution. The ions guided through a sample of rotating3He-A were found to be focused into the cores of the vortices present in this rotating superfluid. Two different types, with different core structures and presumably different numbers of circulation quanta associated with them, were found. The ion mobility along the vortex cores, μ c , observed in the absence of external magnetic field, can be explained by the mobility anisotropy of the A phase, which indicates that the vortices are continuous, i.e., consist of the A phase even in the core. In finite magnetic fields, a qualitatively similar continuous vortex structure was found, a result compatible with the earlier nuclear magnetic resonance (NMR) experiments, but also a new vortex type with an anomalously high μ c was seen when the vortex sample was prepared “adiabatically.” The observed strong ion focusing indicates broken w-symmetry in the core textures. This is in contradiction with the earlier numerical calculations on the optimal continuous vortex texture. Experiments to observe trapping of ions into the vortex cores were performed both in A and B phases. No trapping could be detected. Mobility measurements in stationary liquid were extended down toT=0.3T c . Comparison with the calculated transport coefficients yieldsΔ A (T)=1.32Δ BCS (T) for the maximal A phase gap atP=29.3 bar, andΔ B (T)=1.12Δ BCS (T) for the B phase gap at 4.8 bar. In the normal Fermi liquid a shallow minimum of ion mobility was detected aroundT≃2T c =5 mK.


Vortex Nuclear Magnetic Resonance Vortex Core Fermi Liquid Shallow Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Fetter, inThe Physics of Liquid and Solid Helium, Part I, K. H. Bennemann and J. B. Ketterson, eds. (John Wiley & Sons, New York, 1976), Ch. 3.Google Scholar
  2. 2.
    A. I. Ahonen, J. Kokko, O. V. Lounasmaa, M. A. Paalanen, R. C. Richardson, W. Schoepe, and Y. Takano,Phys. Rev. Lett. 37, 511 (1976).Google Scholar
  3. 3.
    P. D. Roach, J. B. Ketterson, and P. R. Roach,Phys. Rev. Lett. 39, 626 (1977).Google Scholar
  4. 4.
    G. Careri, W. D. McCormick, and F. Scaramuzzi,Phys. Lett. 1, 61 (1962).Google Scholar
  5. 5.
    R. J. Donnelly,Phys. Rev. Lett. 14, 39 (1965).Google Scholar
  6. 6.
    G. W. Rayfield and F. Reif,Phys. Rev. Lett. 11, 305 (1963).Google Scholar
  7. 7.
    E. J. Yarmchuk, M. J. Gordon, and R. E. Packard,Phys. Rev. Lett. 43, 214 (1979); E. J. Yarmchuk and R. E. Packard,J. Low Temp. Phys. 46, 479 (1982).Google Scholar
  8. 8.
    P. J. Hakonen, O. T. Ikkala, S. T. Islander, T. K. Markkula, P. M. Roubeau, K. M. Saloheimo, D. I. Garibashvili, and J. S. Tsakadze,Cryogenics 23, 243 (1983).Google Scholar
  9. 9.
    P. J. Hakonen, O. T. Ikkala, S. T. Islander, O. V. Lounasmaa, and G. E. Volovik,J. Low Temp. Phys. 53, 425 (1983).Google Scholar
  10. 10.
    D. Rainer, unpublished lecture, Lammi, Finland (1981).Google Scholar
  11. 11.
    B. Halpern and R. Gomer,J. Chem. Phys. 51, 1048 (1969).Google Scholar
  12. 12.
    M. Müller, inAdvances in Electronics and Electron Physics, Vol. XIII, L. Marton, ed. (Academic Press, New York, 1960), p. 129.Google Scholar
  13. 13.
    J. T. Simola, K. K. Nummila, L. Skrbek, and J. S. Korhonen,Cryogenics 27, 391 (1987).Google Scholar
  14. 14.
    J. T. Simola, PhD. Thesis, Helsinki University of Technology, 1985 (unpublished).Google Scholar
  15. 15.
    A. I. Ahonen, J. Kokko, M. A. Paalanen, R. C. Richardson, W. Schoepe, and Y. Takanao,J. Low Temp. Phys. 30, 205 (1978).Google Scholar
  16. 16.
    M. I. Aalto, H. K. Collan, R. G. Gylling, and K. O. Nores,Phys. Lett. 41A, 469 (1972).Google Scholar
  17. 17.
    R. M. Bowley,J. Phys. C. 9, L151 (1976).Google Scholar
  18. 18.
    M. R. Williams and A. L. Fetter,Phys. Rev. B 20, 169 (1979).Google Scholar
  19. 19.
    R. H. Salmelin and M. M. Salomaa,J. Phys. C. 20, L681 (1987).Google Scholar
  20. 20.
    C. N. Archie, PhD. Thesis, Cornell University, 1978 (unpublished).Google Scholar
  21. 21.
    T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp. Phys. 45, 373 (1981).Google Scholar
  22. 22.
    P. W. Anderson and P. Morel,Phys. Rev. 123, 1911 (1961); P. W. Anderson and W. F. Brinkman,Phys. Rev. Lett. 30, 1108 (1973).Google Scholar
  23. 23.
    D. S. Greywall,Phys. Rev. B 33, 7520 (1986).Google Scholar
  24. 24.
    R. H. Salmelin and M. M. Salomaa, to be published.Google Scholar
  25. 25.
    G. Baym, C. J. Pethick, and M. Salomaa,J. Low Temp. Phys. 36, 431 (1979).Google Scholar
  26. 26.
    B. D. Josephson and J. Lekner,Phys. Rev. Lett. 23, 111 (1969).Google Scholar
  27. 27.
    A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975).Google Scholar
  28. 28.
    M. Salomaa,J. Physique Colloq. 39, C6–24 (1978).Google Scholar
  29. 29.
    P. J. Hakonen, M. Krusius, M. M. Salomaa, and J. T. Simola,Phys. Rev. Lett. 54, 245 (1985).Google Scholar
  30. 30.
    D. S. Buchanan, G. W. Swift, and J. C. Wheatley,Phys. Rev. Lett. 57, 341 (1986).Google Scholar
  31. 31.
    P. D. Roach, J. B. Ketterson, and P. R. Roach, inQuantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Dufty, eds. (Plenum Press, New York, 1977), p. 259.Google Scholar
  32. 32.
    P. J. Hakonen, O. T. Ikkala, and S. T. Islander,Phys. Rev. Lett. 49, 1258 (1982); P. J. Hakonen, M. Krusius, and H. K. Seppälä,J. Low Temp. Phys. 60, 187 (1985).Google Scholar
  33. 33.
    H. K. Seppälä and G. E. Volovik,J. Low Temp. Phys. 51, 279 (1983).Google Scholar
  34. 34.
    V. Z. Vulovic, D. L. Stein, and A. L. Fetter,Phys. Rev. B 29, 6090 (1984).Google Scholar
  35. 35.
    J. T. Simola, L. Skrbek, K. K. Nummila, and J. S. Korhonen,Phys. Rev. Lett. 58, 904 (1987).Google Scholar
  36. 36.
    J. T. Simola, to be published.Google Scholar
  37. 37.
    A. L. Fetter,J. Low Temp. Phys. 67, 145 (1987).Google Scholar
  38. 38.
    G. E. Volovik and P. J. Hakonen,J. Low Temp. Phys. 42, 503 (1981).Google Scholar
  39. 39.
    A. L. Fetter, J. A. Sauls, and D. L. Stein,Phys. Rev. B 28, 5061 (1983).Google Scholar
  40. 40.
    J. T. Simola, K. K. Nummila, A. Hirai, J. S. Korhonen, W. Schoepe, and L. Skrbek,Phys. Rev. Lett. 57, 1923 (1986).Google Scholar
  41. 41.
    W. P. Pratt, Jr., and W. Zimmermann, Jr.,Phys. Rev. 177, 412 (1969).Google Scholar
  42. 42.
    N. D. Mermin and T.-L. Ho,Phys. Rev. Lett. 36, 594 (1976).Google Scholar
  43. 43.
    H. K. Seppälä, P. J. Hakonen, M. Krusius, T. Ohmi, M. M. Salomaa, J. T. Simola, and G. E. Volovik,Phys. Rev. Lett. 52, 1802 (1984).Google Scholar
  44. 44.
    M. Salomaa, C. J. Pethick, and G. Baym,J. Low Temp. Phys. 40, 297 (1980).Google Scholar
  45. 45.
    K. K. Nummila, P. J. Hakonen, and J. S. Korhonen, to be published.Google Scholar
  46. 46.
    M. M. Salomaa and G. E. Volovik,Phys. Rev. B 31, 203 (1985).Google Scholar
  47. 47.
    D. Rainer and M. Vuorio,J. Phys. C 10, 3093 (1977).Google Scholar
  48. 48.
    E. V. Thuneberg, J. Kurkijärvi, and D. Rainer,J. Phys. C 14, 5615 (1981).Google Scholar
  49. 49.
    M. M. Salomaa and G. E. Volovik,Phys. Rev. Lett. 51, 2040 (1983).Google Scholar
  50. 50.
    V. P. Mineev and M. M. Salomaa,J. Phys. C 17, L181 (1983).Google Scholar
  51. 51.
    E. V. Thuneberg,Phys. Rev. Lett. 56, 359 (1986); M. M. Salomaa and G. E. Volovik,Phys. Rev. Lett. 56, 363 (1986).Google Scholar
  52. 52.
    E. V. Thuneberg,Phys. Rev. B 36, 3583 (1987).Google Scholar
  53. 53.
    R. J. Donnelly and P. H. Roberts,Proc. Roy. Soc. A 312, 519 (1969).Google Scholar
  54. 54.
    W. Schoepe, private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • K. K. Nummila
    • 1
  • J. T. Simola
    • 1
  • J. S. Korhonen
    • 1
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland

Personalised recommendations