Journal of Low Temperature Physics

, Volume 92, Issue 1–2, pp 107–125 | Cite as

Orientational ordering in quench-condensed H2 measured by ac calorimetry

  • R. B. Phelps
  • J. T. Birmingham
  • P. L. Richards


The heat capacity of quench-condensed normal- and para-hydrogen has been measured using ac calorimetry. The measurements were made at temperatures from 1.6 to 3.7 K on sapphire and evaporated gold substrates. The range of exposures studied was 0.24 to 3.3 Å−2, yielding estimated coverages from 0.07 to 2.5 Å−2. For reference, monolayer completion of H2 on graphite occurs at a coverage of 0.1 Å−2. For normal-hydrogen (n-H2) on a few of our sapphire substrates, the heat capacity as a function of temperature exhibits a peak at 1.8 K, followed by a rapid decrease. For then-H2 data on all other substrates, a negative slope is observed at the lowest temperatures measured, which is consistent with a peak below our temperature range. We attribute these effects to a bulk-like orientational ordering transition. The coverage dependence of the peak is not consistent with the predictions of a model of finite-size effects. We conclude that the dominant broadening of the peak is inhomogeneous. The desorption rate is deduced from the time dependence of the heat capacity and is found to agree with previously published values. The ortho-to-para conversion rate is comparable to that of bulk hydrogen.


Hydrogen Gold Graphite Heat Capacity Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. F. Silvera,Rev. Mod. Phys. 52, 393 (1980).Google Scholar
  2. 2.
    H. Wiechert,Physica B 169, 144 (1991).Google Scholar
  3. 3.
    P. R. Kubik, W. N. Hardy, and H. Glattli,Can. J. Phys. 63, 605 (1985).Google Scholar
  4. 4.
    F. C. Motteler, Ph.D. thesis, University of Washington, 1986.Google Scholar
  5. 5.
    P. Avouris, D. Schmeisser, and J. E. Demuth,Phys. Rev. Lett. 48, 199 (1982).Google Scholar
  6. 6.
    E. Ilisca,Phys. Rev. Lett. 66, 667 (1991).Google Scholar
  7. 7.
    T. W. Kenny and P. L. Richards,Rev. Sci. Instrum. 61, 822 (1990).Google Scholar
  8. 8.
    Vac-Seal Epoxy, 288–6000, Perkin Elmer Vacuum Products Division, Eden Prairie, MN.Google Scholar
  9. 9.
    T. R. Govers, L. Mattera, and G. Scoles,J. Chem. Phys. 72, 5446 (1980).Google Scholar
  10. 10.
    G. J. Kellogg, P. E. Sokol, S. K. Sinha, and D. L. Price,Phys. Rev. B 42, 7725 (1990).Google Scholar
  11. 11.
    R. W. Hill and B. W. A. Ricketson,Philos. Mag. 45, 277 (1954).Google Scholar
  12. 12.
    J. T. Birmingham and P. L. Richards, to be published.Google Scholar
  13. 13.
    A. D. Migone, A. Hofmann, J. G. Dash, and O. E. Vilches,Phys. Rev. B 37, 5440 (1988).Google Scholar
  14. 14.
    A. D. Migone, private communication.Google Scholar
  15. 15.
    T. E. Huber and C. A. Huber,J. Low Temp. Phys. 80, 315 (1990).Google Scholar
  16. 16.
    J. G. Dash, Films on Solid Surfaces (Academic Press, New York, 1975), pp. 216–217 and pp. 235–236.Google Scholar
  17. 17.
    X.-Z. Ni and L. W. Bruch,Phys. Rev. B 33, 4584 (1986).Google Scholar
  18. 18.
    M. S. S. Challa, D. P. Landau, and K. Binder,Phys. Rev. B 34, 1841 (1986).Google Scholar
  19. 19.
    M. E. Fisher and A. N. Berker,Phys. Rev. B 26, 2507 (1982).Google Scholar
  20. 20.
    Y. Imry,Phys. Rev. B 21, 2042 (1980).Google Scholar
  21. 21.
    R. Marx,Phys. Rev. B 40, 2585 (1989).Google Scholar
  22. 22.
    H. Shechter, J. Suzanne, and J. G. Dash,Phys. Rev. Lett. 37, 706 (1976).Google Scholar
  23. 23.
    P. Sheng, R. W. Cohen, and J. R. Schrieffer,J. Phys. C: Solid State Phys. 14, L565 (1981).Google Scholar
  24. 24.
    P. Leiderer and U. Albrecht,J. Low Temp. Phys. 89, 229 (1992); U. Albrecht, P. Evers, and P. Leiderer, inProceedings of the International Symposium on Dynamical Processes on Solid Surfaces, Tokyo, April 20–23, 1992, to appear inSurf. Sci. Google Scholar
  25. 25.
    N. Steinmetz, H. Menges, J. Dutzi, H. v. Löhneysen and W. Goldacker,Phys. Rev. B 39, 2838 (1989).Google Scholar
  26. 26.
    K.-H. Müller,Surf. Sci. 184, L375 (1987).Google Scholar
  27. 27.
    U. Albrecht, private communication.Google Scholar
  28. 28.
    K. K. Kakati and H. Wilman,J. Phys. D: Appl. Phys. 6, 1307 (1973).Google Scholar
  29. 29.
    T. Jach, G. Hembree, and L. B. Holdeman,Thin Solid Films 187, 133 (1990).Google Scholar
  30. 30.
    J. Krim,Thin Solid Films 137, 297 (1986).Google Scholar
  31. 31.
    J. K. Gimzewski, A. Humbert, J. G. Bednorz, and B. Reihl,Phys. Rev. Lett. 55, 951 (1985).Google Scholar
  32. 32.
    C. Benvenuti, R. S. Calder, and G. Passardi,J. Vac. Sci. Technol. 13, 1172 (1976).Google Scholar
  33. 33.
    D. P. Woodruff and T. A. Delchar,Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1986), p. 4.Google Scholar
  34. 34.
    J. Cui, S. C. Fain, Jr., and W. Liu,J. Vac. Sci. Technol. A 7, 1850 (1989).Google Scholar
  35. 35.
    W. Liu and S. C. Fain, Jr.,J. Vac. Sci. Technol. A 10, 2231 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • R. B. Phelps
    • 1
  • J. T. Birmingham
    • 1
  • P. L. Richards
    • 1
  1. 1.Department of PhysicsUniversity of California, Materials Sciences Division, Lawrence Berkeley LaboratoryBerkeley

Personalised recommendations