Skip to main content
Log in

The spin-up problem in Helium II

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The laminar spin-up of Helium II is studied by solving the linearized equations of motion for the normal and superfluid components and the quantized vortex lines in a simple case. The fluid is taken to be confined between two parallel planes whose angular velocity increases at a small, steady rate. The vortex lines are treated as a continuum. No direct interactions between the vortex lines and the walls are included. Two mechanisms are identified for the transfer of angular momentum from the container to the interior fluid. In the first place, classical Ekman pumping occurs in the normal fluid component. Secondly, mutual friction between the normal Ekman layer and the vortex lines produces an (Ekman-like) secondary flow in the superfluid component. In both mechanisms, mutual friction in the interior couples the normal and superfluid components together, so that both components spin up. Normal-fluid Ekman pumping is found to dominate at temperatures close to the λ-point (Tλ=2.17 K), while the second mechanism becomes progressively more important at lower temperatures. In the small-Ekman-number limit, when the vertical container dimension 2a is much larger than the Ekman layer thickness, the spin-up time (i.e., the time lag between the container and the interior fluid) for both components ist spin-upf(T)aΩ −1/20 , where Ω0 is the angular velocity andf(T) is a decreasing function of temperature. Although some experimental spin-up times in He II have been reported in the literature, their analysis involves many uncertainties. Thus, new experiments to test this model should be highly desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Campbell and Yu. K. Krasnov,J. Low Temp. Phys. 49, 377 (1982).

    Google Scholar 

  2. R. J. Donnelly,Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  3. J. A. Sauls, inTiming Neutron Stars, H. Ögelman and E. P. J. van den Heuvel, eds. (Kluwer Academic Publishers, Dordrecht and Boston, 1989), p. 457.

    Google Scholar 

  4. F. K. Lamb, inFrontiers of Stellar Evolution, D. L. Lambert, ed. (Astron. Society of the Pacific, 1991), p. 299.

  5. G. Baym, R. I. Epstein, and B. Link,Physica B 178, 1 (1992).

    Google Scholar 

  6. A. G. Lyne, F. Graham Smith, and R. S. Pritchard,Nature 359, 706 (1992).

    Google Scholar 

  7. H. P. Greenspan and L. N. Howard,J. Fluid Mech. 17, 385 (1963).

    Google Scholar 

  8. H. P. Greenspan,The Theory of Rotating Fluids (Cambridge University Press, Cambridge, 1968).

    Google Scholar 

  9. E. R. Benton and A. Clark,Ann. Rev. Fluid Mech. 6, 257 (1974).

    Google Scholar 

  10. E. H. Wedemeyer,J. Fluid Mech. 20, 383 (1964).

    Google Scholar 

  11. J. S. Tsakadze and S. J. Tsakadze,Sov. Phys.-JETP 37, 918 (1973).

    Google Scholar 

  12. J. S. Tsakadze and S. J. Tsakadze,Sov. Phys.-Uspekhi 18, 242 (1975).

    Google Scholar 

  13. J. S. Tsakadze and S. J. Tsakadze,J. Low Temp. Phys. 39, 649 (1980).

    Google Scholar 

  14. M. A. Alpar,J. Low Temp. Phys. 31, 803 (1978).

    Google Scholar 

  15. P. W. Adams, M. Cieplak, and W. I. Glaberson,Phys. Rev. B 32, 171 (1985).

    Google Scholar 

  16. J. D. Reppy, D. Depatie, and C. T. Lane,Phys. Rev. Lett. 5, 541 (1960); J. D. Reppy and C. T. Lane, inProceedings of the VII International Conference on Low Temperature Physics, G. M. Graham and A. C. Hollis Hallett, eds. (Univ. of Toronto Press, Toronto, 1961), p. 433;Phys. Rev. 140, A106 (1965).

    Google Scholar 

  17. W. Poppe and D. W. Schmidt,Theoretical Investigation of the Development of the Normal Fluid and Superfluid Velocity Distributions During Spin-up for He II-filled Cylinder, MPI Strömungsforsch., Göttingen, Bericht 6 (1987); graphs of their results are also given in Ref. 18.

    Google Scholar 

  18. Z. Peradzynski, S. Filipkowski, and W. Fiszdon,Eur. J. Mech. B/Fluids 9, 259 (1990).

    Google Scholar 

  19. E. Chandler and G. Baym,J. Low Temp. Phys. 62, 119 (1986); see also G. Baym and E. Chandler,J. Low Temp. Phys. 50, 57 (1983).

    Google Scholar 

  20. H. E. Hall, inLiquid Helium, International School of Physics “Enrico Fermi”, Course XXI, G. Careri, ed. (Academic Press, New York, 1963), p. 326; see Ref. 2, Sec. 6.2.4, for the HVBK equations in a rotating reference frame.

    Google Scholar 

  21. J. Wilks,The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967), Chapters 3 and 7.

    Google Scholar 

  22. D. R. Tilleyand J. Tilley,Superfluidity and Superconductivity, third edition (Adam Hilger, Bristol and New York, 1990), Sec. 3.9.

    Google Scholar 

  23. E. J. Yarmchuk and W. I. Glaberson,J. Low Temp. Phys. 36, 381 (1979); S. G. Hedge and W. I. Glaberson,Phys. Rev. Lett. 45, 190 (1980).

    Google Scholar 

  24. H. Bondi and R. A. Lyttleton,Proc. Camb. Phil. Soc. 44, 345 (1948).

    Google Scholar 

  25. T. von Kármán,Zeitschrift für Angewandte Mathematik und Mechanik 1, 233 (1921), also inCollected Works of Theodore von Kármán, vol. II, p. 70 (Butterworths Scientific Publications, London, 1956).

    Google Scholar 

  26. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen,J. Low Temp. Phys. 52, 189 (1983).

    Google Scholar 

  27. C. E. Swanson, W. T. Wagner, R. J. Donnelly, and C. F. Barenghi,J. Low Temp. Phys. 66, 263 (1987).

    Google Scholar 

  28. W. I. Glaberson, W. W. Johnson, and R. M. Ostermeier,Phys. Rev. Lett. 33, 1197 (1974); R. M. Ostermeier and W. I. Glaberson,J. Low Temp. Phys. 21, 191 (1975).

    Google Scholar 

  29. F. Staas, K. W. Taconis, and W. M. van Alphen,Physica 27, 893 (1961); S. C. Courts and J. T. Tough,Phys. Rev. B 38, 74 (1988); T. Oestereich and J. K. Xie,J. Low Temp. Phys. 83, 57 (1991).

    Google Scholar 

  30. J. T. Tough, inProgress in Low Temperature Physics, vol. VIII, D. F. Brewer, ed., p. 133 (North-Holland, Amsterdam, 1982); K. W. Schwarz,Phys. Rev. Lett. 69, 3342 (1992).

    Google Scholar 

  31. S. Wang, C. Howald, and H. Meyer,J. Low Temp. Phys. 79, 151 (1990).

    Google Scholar 

  32. A. Reisenegger and P. Goldreich,Astrophys. J. 395, 240 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisenegger, A. The spin-up problem in Helium II. J Low Temp Phys 92, 77–106 (1993). https://doi.org/10.1007/BF00681873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681873

Keywords

Navigation