Journal of Low Temperature Physics

, Volume 55, Issue 5–6, pp 495–526 | Cite as

Vibrating superleak second-sound transducers. Theory and experiment

  • N. Giordano


The properties of vibrating superleak second-sound transducers of the type invented by Rudnick and co-workers and Sherlock and Edwards are discussed. Recent theoretical treatments of these transducers are reviewed, and an error in Saslow's theory of the detection process is corrected. The theory is then extended so as to take into account Poiseuille flow of the normal fluid through the superleak. We also describe experiments in which the transducers are used to excite and detect second sound in a resonant cavity containing superfluid4He. Our results indicate that the flow of the normal fluid component through the superleak is very important under the conditions commonly found in experiments involving these transducers. The experimental results are in good general agreement with the theory.


Magnetic Material Detection Process Theoretical Treatment Poiseuille Flow Resonant Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Williams, S. E. A. Beaver, J. C. Fraser, R. S. Kagiwada, and I. Rudnick,Phys. Lett. 29A, 279 (1969).Google Scholar
  2. 2.
    R. A. Sherlock and D. O. Edwards,Rev. Sci. Instrum. 41, 1603 (1970).Google Scholar
  3. 3.
    N. R. Brubaker, D. O. Edwards, R. E. Sarwinski, P. Seligmann, and R. A. Sherlock,J. Low Temp. Phys. 3, 619 (1970).Google Scholar
  4. 4.
    D. S. Greywall and G. Ahlers,Phys. Rev. Lett. 28, 1251 (1972);Phys. Rev. A 7, 2145 (1973).Google Scholar
  5. 5.
    G. G. Ihas and F. Pobell,Phys. Rev. A 9, 1278 (1974).Google Scholar
  6. 6.
    W. C. Thomlinson, G. G. Ihas, and F. Pobell,Phys. Rev. B 11, 4292 (1975).Google Scholar
  7. 7.
    D. S. Greywall,Phys. Rev. B 20, 2643 (1979).Google Scholar
  8. 8.
    G. Ahlers,Phys. Rev. Lett. 43, 1417 (1979).Google Scholar
  9. 9.
    L. R. Corruccini and D. D. Osheroff,Phys. Rev. Lett. 45, 2029 (1980).Google Scholar
  10. 10.
    D. d'Humieres, A. Launay, and A. Libchaber,J. Low Temp. Phys. 38, 207 (1980).Google Scholar
  11. 11.
    D. S. Greywall and M. A. Paalanen,Phys. Rev. Lett. 46, 1292 (1981).Google Scholar
  12. 12.
    E. S. Murdock and L. R. Corruccini,J. Low Temp. Phys. 46, 219 (1982).Google Scholar
  13. 13.
    M. Liu and M. R. Stern,Phys. Rev. Lett. 48, 1842 (1982).Google Scholar
  14. 14.
    D. L. Johnson,Phys. Rev. Lett. 49, 1361 (1982).Google Scholar
  15. 15.
    M. Liu and M. R. Stern,Phys. Rev. Lett. 49, 1362 (1982).Google Scholar
  16. 16.
    W. M. Saslow,Phys. Rev. B 27, 588 (1983).Google Scholar
  17. 17.
    I. M. Khalatnikov,Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).Google Scholar
  18. 18.
    K. R. Symon,Mechanics, 3rd ed. (Addison-Wesley, Reading, 1971).Google Scholar
  19. 19.
    I. B. Crandall,Theory of Vibrating Systems and Sound (Van Nostrand, New York, 1926).Google Scholar
  20. 20.
    P. M. Morse and K. U. Ingard,Theoretical Acoustics (McGraw-Hill, New York, 1968).Google Scholar
  21. 21.
    G. W. Swift, A. Migliori, S. L. Garrett, and J. C. Wheatley,Rev. Sci. Instrum. 53, 1906 (1982); N. Giordano, to be published.Google Scholar
  22. 22.
    N. Giordano,Phys. Rev. B 27, 5447 (1983).Google Scholar
  23. 23.
    P. M. Morse,Vibration and Sound, 2nd ed. (McGraw-Hill, New York, 1948).Google Scholar
  24. 24.
    J. Heiserman and I. Rudnick,J. Low Temp. Phys. 22, 481 (1976).Google Scholar
  25. 25.
    J. Wilks,The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • N. Giordano
    • 1
  1. 1.Department of PhysicsPurdue UniversityWest Lafayette

Personalised recommendations