Journal of Low Temperature Physics

, Volume 49, Issue 1–2, pp 101–122 | Cite as

NMR studies of single crystals of H2. V. NMR anisotropy and order parameter distribution ofX (ortho)≤0.55

  • S. Washburn
  • M. Calkins
  • H. Meyer
  • A. B. Harris


We report a study of the NMR line shapes in hcp single crystals of H2 with ortho concentrationsX≤0.55 in the regime where there is no longer a transition to a long-range orientationally ordered phase. From the anisotropy of the o-H2 impurity NMR spectrum at low ortho concentration, reached by ortho-para conversion, the crystal orientation is determined. The second momentM2 can be represented by a function of the formM2=Φ(X, T)f(cos θ Hc ), where θ Hc is the angle between the applied magnetic field and the crystalc axis. For a single crystal, the anisotropy functionf(cos θ Hc ) is found to be independent of temperature and of ortho concentration within experimental error, and is in very good agreement with predictions based on the first term of the high-temperature expansion ofM2 and on other, more general symmetry arguments. An order parameter σ is defined and the distribution functionP(σ) is calculated from the NMR line shapes under the simplifying assumption that the anisotropy of the order parameter, which gives rise to the observed anisotropy ofM2, can be neglected. We giveP(σ) as a function ofX at low temperature, where the line shape is only weakly dependent onT, and as a function ofT at constantX. It is found that the line shapes andP(σ) in both situations evolve continuously and give no hint of a phase transition. These results are discussed in relation to those of magnetic spin-glasses, and it is concluded that the orientational regime in solid H2, called a quadrupolar glass by previous investigators, cannot be distinguished by symmetry from the orientationally disordered phase that occurs at high temperature.


Anisotropy Line Shape Applied Magnetic Field Crystal Orientation Previous Investigator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. F. Silvera,Rev. Mod. Phys. 52, 393 (1980).Google Scholar
  2. 2.
    A. B. Harris,J. Appl. Phys. 42, 1574 (1971).Google Scholar
  3. 3.
    D. G. Haase and A. M. Saleh,Physica B+C 107, 191 (1981), and references therein.Google Scholar
  4. 4.
    J. V. Gates, P. R. Ganfors, B. A. Fraas, and R. O. Simmons,Phys. Rev. B 19, 3667 (1979).Google Scholar
  5. 5.
    N. S. Sullivan, M. Devoret, B. P. Cowan, and C. Urbina,Phys. Rev. B 17, 5016 (1978).Google Scholar
  6. 6.
    H. Maletta and W. Felsch,Phys. Rev. B 20, 1245 (1979); D. Meschedeet al., Phys. Rev. Lett. 44, 102 (1980).Google Scholar
  7. 7.
    S. Washburn, R. Schweizer, and H. Meyer,Solid State Commun. 35, 623 (1980).Google Scholar
  8. 8.
    D. Candela, S. Buchman, W. T. Vetterling, and R. V. Pound,Physica B + C 107, 187 (1981).Google Scholar
  9. 9.
    D. Estève, M. Devoret, and N. S. Sullivan, to be published.Google Scholar
  10. 10.
    R. Schweizer, S. Washburn, and H. Meyer,J. Low Temp. Phys. 37, 289 (1979).Google Scholar
  11. 11.
    S. Washburn, M. Calkins, H. Meyer, and A. B. Harris, to be published.Google Scholar
  12. 12.
    R. Schweizer, S. Washburn, H. Meyer, and A. B. Harris,J. Low Temp. Phys. 37, 309 (1979).Google Scholar
  13. 13.
    M. E. Rose,Elementary Theory of Angular Momentum (Wiley, New York, 1957).Google Scholar
  14. 14.
    L. I. Amstutz, H. Meyer, S. M. Myers, and R. L. Mills,J. Phys. Chem. Solids 30, 2693 (1969); F. Weinhaus and H. Meyer,Phys. Rev. B 7, 2974 (1973), and references therein.Google Scholar
  15. 15.
    A. B. Harris,Phys. Rev. B 1, 1881 (1970).Google Scholar
  16. 16.
    A. B. Harris,Phys. Rev. B 2, 3495 (1970).Google Scholar
  17. 17.
    W. N. Hardy and A. J. Berlinsky,Phys. Rev. Lett. 34, 1520 (1975; W. N. Hardy, A. J. Berlinsky, and A. B. Harris,Can. J. Phys. 55, 1150 (1977); A. B. Harris, A. J. Berlinsky, and W. N. Hardy,Can. J. Phys. 55, 1180 (1977).Google Scholar
  18. 18.
    P. Pedroni, R. Schweizer, and H. Meyer,Phys. Rev. B 14, 896 (1976) and references therein.Google Scholar
  19. 19.
    S. Washburn, I. Yu, and H. Meyer,Phys. Lett. 85A, 365 (1981); I. Yu, S. Wasburn, and H. Meyer,Solid State Commun. 40, 693 (1981).Google Scholar
  20. 20.
    N. S. Sullivan and D. Estève,Physica 107, 189 (1981); D. Estève and N. S. Sullivan,J. Phys. C., submitted.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • S. Washburn
    • 1
  • M. Calkins
    • 1
  • H. Meyer
    • 1
  • A. B. Harris
    • 2
  1. 1.Department of PhysicsDuke UniversityDurham
  2. 2.Department of PhysicsUniversity of PennsylvaniaPhiladelphia

Personalised recommendations