Skip to main content
Log in

Nuclear magnetic relaxation of3He gas. II.3He-4He mixtures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Longitudinal relaxation timesT 1 have been measured in3He-4He gas mixtures, using pulsed NMR, in the temperature range 0.6–15 K. Helium-3 number densities of the order of 1024 atoms m−3 were used. Relaxation takes place on or near the walls of the Pyrex sample cells and measurements ofT 1 give information about the surface phases. A cryogenic precoating of solid molecular hydrogen was used to reduce the helium-substrate binding energy from ∼100 K on Pyrex to ∼ 13 K for3He and 15 K for4He. TheT 1 data at high temperatures were similar to those observed previously in the pure3He-H2 system. The presence of4He generally causedT 1 to rise on cooling below 2 K due to the preferential adsorption of4He over3He at the surface. However,3He atoms that go into quasiparticle states in the superfluid helium film can be an extra source of relaxation. In uncleaned cells, relaxation probably takes place in quasiparticle states at the free surface of the superfluid film, which are bound with an energy of 5.1±0.3 K. Baking the Pyrex cells under vacuum and rf discharge cleaning the walls before sealing in the sample gas were found to increase the bulk gasT 1 by two or three orders of magnitude. In a cleaned, sealed cell aT 1 of ∼8 h was measured at 7.7 MHz and 0.8 K. In this case relaxation is probably occurring two or three helium layers away from the helium-hydrogen interface. It may be possible to observe a predicted minimum in the intrinsic dipolarT 1 of the bulk gas by using a4He wall coating to suppress wall relaxation effects (which usually dominate the nuclear relaxation of the bulk gas).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lhuillier and F. Lalöe,J. Phys. (Paris)40, 239 (1979).

    Google Scholar 

  2. C. Lhuillier and F. Lalöe,J. Phys. (Paris)43, 197, 225 (1982).

    Google Scholar 

  3. C. Lhuillier,J. Phys. (Paris)44, 1 (1983).

    Google Scholar 

  4. B. Shizgal,J. Chem. Phys. 58, 3424 (1973).

    Google Scholar 

  5. B. Shizgal,Chem. Phys. Lett. 20, 265 (1973).

    Google Scholar 

  6. M. G. Richards, A. R. Andrews, C. P. Lusher, and J. Schratter,Rev. Sci. Instrum. 57, 404 (1986).

    Google Scholar 

  7. C. P. Lusher, M. F. Secca, and M. G. Richards,J. Low Temp. Phys., this issue, preceding paper.

  8. C. P. Lusher, M. F. Secca, and M. G. Richards, inProceedings 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), Part II, p. 1251.

    Google Scholar 

  9. L. Pierre, H. Guignes, and C. Lhuillier,J. Chem. Phys. 82, 496 (1985).

    Google Scholar 

  10. V. Lefevre-Seguin, P. J. Nacher, J. Brossel, W. N. Hardy, and F. Lalöe,J. Phys. (Paris)46, 1145 (1985).

    Google Scholar 

  11. M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O. E. Vilches,Phys. Rev. A8, 1589 (1973).

    Google Scholar 

  12. C. Ebner and D. O. Edwards,Phys. Rep. 2, 77 (1970).

    Google Scholar 

  13. D. O. Edwards and W. F. Saam, inProgress in Low Temperature Physics, Vol. VIA, D. F. Brewer, ed. (North-Holland, Amsterdam, 1978), Chapter 4.

    Google Scholar 

  14. J. Frenkel,Kinetic Theory of Liquids (Oxford University Press, London, 1949); G. D. Halsey, Jr.,J. Chem. Phys. 16, 931 (1948); T. L. Hill,J. Chem. Phys. 17, 590 (1949).

    Google Scholar 

  15. G. Vidali, M. W. Cole, and C. Schwartz,Surf. Sci. 87, 273 (1979).

    Google Scholar 

  16. C. P. Lusher, D. Phil. Thesis, University of Sussex (1985), unpublished.

  17. K. Thompson,J. Low. Temp. Phys. 32, 361 (1978).

    Google Scholar 

  18. J. P. Laheurte,Phys. Rev. A6, 2452 (1972).

    Google Scholar 

  19. M. Himbert, These d'Etat, Universite Pierre et Marie Curie, Paris (1987), unpublished.

    Google Scholar 

  20. A. F. Andreev,Zh. Eksp. Teor. Fiz. 50, 1415 (1966) [Sov. Phys.-JETP]23, 939 (1966)].

    Google Scholar 

  21. J. Lekner,Phil. Magn. 22, 669 (1970).

    Google Scholar 

  22. M. J. Di Pirro and F. M. Gasparini,Phys. Rev. Lett. 44, 269 (1980).

    Google Scholar 

  23. M. Himbert, V. Lefevre-Seguin, P. J. Nacher, J. Dupont-Roc, M. Leduc, and F. Lalöre,J. Phys. Lett. (Paris) 44, L523 (1983).

    Google Scholar 

  24. M. Himbert and J. Dupont-Roc, inProceedings 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), Part I, p. 559.

    Google Scholar 

  25. R. Chapman and M. G. Richards,Phys. Rev. Lett. 33, 18 (1974).

    Google Scholar 

  26. R. Chapman,Phys. Rev. A12, 2333 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lusher, C.P., Secca, M.F. & Richards, M.G. Nuclear magnetic relaxation of3He gas. II.3He-4He mixtures. J Low Temp Phys 72, 71–97 (1988). https://doi.org/10.1007/BF00681727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681727

Keywords

Navigation