Journal of Low Temperature Physics

, Volume 72, Issue 1–2, pp 25–69 | Cite as

Nuclear magnetic relaxation of3He gas. I. Pure3He

  • C. P. Lusher
  • M. F. Secca
  • M. G. Richards


Longitudinal relaxation timesT1 have been measured in3He gas, using pulsed NMR, for number densities between 3 × 1023 and 6 × 1025 spins m−3 and temperatures between 0.6 and 15 K. Relaxation takes place on or near the walls of the Pyrex sample cells and measurements ofT1 give information about the surface phases. A cryogenic wall coating of solid molecular hydrogen was found to delay the formation of a3He monolayer on cooling, andT1 measurements were consistent with a binding energy of ∼13 K for a3He atom to a hydrogen surface. At temperatures below ∼2 K a completed3He monolayer forms on the H2 coating. No variation of the areal density of monolayer completion with bulk number density at fixed temperature could be observed and the completed3He monolayer is thought to be a dense fluid. Baking the Pyrex sample cells under vacuum and using an rf discharge in3He gas to clean the walls before sealing in the sample gas were found to increase the observed T1's by up to three orders of magnitude. Once a3He monolayer has formed on the H2 surface in these cleaned, sealed cells, the dipolar interaction between adsorbed spins is thought to be the dominant source of longitudinal relaxation. The data are consistent with a dipolar relaxation model with a correlation time of ∼2 × 10−9 sec. This time is long compared to the value of 10−11 or 10−12 sec in the 3D fluid. This suggests that if the surface phase is a 2D fluid and the dipolar mechanism is indeed the dominant one, then the atoms in the 2D fluid are less mobile than in three dimensions. This is consistent with recent susceptibility measurements.


Areal Density Surface Phase Magnetic Relaxation Relaxation Model Monolayer Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spin polarized quantum systems,J. Phys. (Paris)41 (C7) (1980).Google Scholar
  2. 2.
    C. Lhuillier and F. Lalöe,J. Phys. (Paris)40, 239 (1979).Google Scholar
  3. 3.
    C. Lhuillier and F. Lalöe,J. Phys. (Paris)43, 197, 225 (1982).Google Scholar
  4. 4.
    C. Lhuillier,J. Phys. (Paris)44, 1 (1983).Google Scholar
  5. 5.
    F. D. Colegrove, L. D. Schearer, and G. K. Walters,Phys. Rev. 132, 2561 (1963).Google Scholar
  6. 6.
    P. J. Nacher, M. Leduc, G. Trenec, and F. Lalöe,J. Phys. Lett. (Paris)43, L525 (1982).Google Scholar
  7. 7.
    V. Lefevre-Seguin, Thèse d'Etat, Paris VI (1984), unpublished.Google Scholar
  8. 8.
    V. Lefevre-Seguin, P. J. Nacher, J. Brossel, W. N. Hardy, and F. Lalöe,J. Phys. (Paris)46, 1145 (1985).Google Scholar
  9. 9.
    E. P. Horvitz,Phys. Rev. A 1, 1708 (1970).Google Scholar
  10. 10.
    W. A. Fitzsimmon, L. L. Tankersley, and G. K. Walters,Phys. Rev. 179, 156 (1969).Google Scholar
  11. 11.
    R. S. Timsit, J. M. Daniels, and A. D. May,Can. J. Phys. 49, 560 (1971).Google Scholar
  12. 12.
    J. G. Ganiere,Helv. Phys. Acta 46, 147 (1973).Google Scholar
  13. 13.
    K. Luszczynski, R. E. Norberg, and J. E. Opfer,Phys. Rev. 128, 186 (1962).Google Scholar
  14. 14.
    R. Chapman and M. G. Richards,Phys. Rev. Lett. 33, 18 (1974).Google Scholar
  15. 15.
    R. Barbe, F. Lalöe, and J. Brossel,Phys. Rev. Lett. 34, 1488 (1974).Google Scholar
  16. 16.
    R. Chapman,Phys. Rev. A 12, 2333 (1975).Google Scholar
  17. 17.
    R. Chapman and M. Bloom,Can. J. Phys. 54, 861 (1976).Google Scholar
  18. 18.
    B. N. Esel'son, V. A. Mikheev, V. A. Maidanov, and N. P. Mikhin,Sov. J. Low Temp. Phys. 7, 466 (1981).Google Scholar
  19. 19.
    B. Shizgal,J. Chem. Phys. 58, 3424 (1973).Google Scholar
  20. 20.
    B. Shizgal,Chem. Phys. Lett. 20, 265 (1973).Google Scholar
  21. 21.
    C. P. Lusher, M. F. Secca, and M. G. Richards, inProceedings 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), Part II, p. 1251.Google Scholar
  22. 22.
    C. P. Lusher, M. F. Secca, and M. G. Richards,J. Low Temp. Phys., this issue, following paper.Google Scholar
  23. 23.
    W. E. Keller,Phys. Rev. 98, 1571 (1955).Google Scholar
  24. 24.
    V. P. Peshkov,Sov. Phys.-JETP 6, 645 (1958).Google Scholar
  25. 25.
    L. D. Landau and E. M. Lifshitz,Statistical Physics, 3rd ed. (Pergamon Press, 1980), Part 1, 135.Google Scholar
  26. 26.
    J. E. Opfer, K. Luszczynski, and R. E. Norberg,Phys. Rev. 140, A100 (1965).Google Scholar
  27. 27.
    L. Pierre, H. Guignes, and C. Lhuillier, inProceedings 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), Part II, p. 1019.Google Scholar
  28. 28.
    L. Pierre, H. Guignes, and C. Lhuillier,J. Chem. Phys. 82, 496 (1985).Google Scholar
  29. 29.
    J. P. Hobson,Can. J. Phys. 43, 1941 (1965).Google Scholar
  30. 30.
    G. J. Goellner, J. G. Daunt, and E. Lerner,J. Low Temp. Phys. 21, 347 (1975).Google Scholar
  31. 31.
    A. D. Novaco,Phys. Rev. A 7, 678 (1973).Google Scholar
  32. 32.
    M. W. Cole, D. R. Frankl, and D. L. Goodstein,Rev. Mod. Phys. 53, 199 (1981).Google Scholar
  33. 33.
    R. L. Elgin, J. M. Grief, and D. L. Goodstein,Phys. Rev. Lett. 41, 1723 (1978).Google Scholar
  34. 34.
    R. L. Elgin and D. L. Goodstein,Phys. Rev. A 9, 2657 (1974).Google Scholar
  35. 35.
    R. L. Elgin, J. M. Greif, and D. L. Goodstein, private communication.Google Scholar
  36. 36.
    C. E. Campbell, F. J. Milford, A. D. Novaco, and M. Schick,Phys. Rev. A 6, 1648 (1972).Google Scholar
  37. 37.
    M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O. E. Vilches,Phys. Rev. A 8, 1589 (1973): S. V. Hering, S. W. Van Schiver, and O. E. Vilches,J. Low Temp. Phys. 25, 793 (1976).Google Scholar
  38. 38.
    C. Tiby, H. Wiechert, H. J. Lauter, and H. Godfrin,Physica 107B, 209 (1981).Google Scholar
  39. 39.
    J. E. Kilpatrick, W. E. Keller, and E. F. Hammel,Phys. Rev. 97, 9 (1955).Google Scholar
  40. 40.
    L. D. Schearer and G. K. Walters,Phys. Rev. 139, A1398 (1965).Google Scholar
  41. 41.
    F. Masnou-Seeuws and M. Bouchiat,J. Phys. (Paris)28, 406 (1967).Google Scholar
  42. 42.
    J. Crank,The Mathematics of Diffusion, 2nd ed. (Clarendon, Oxford, 1975), p. 91.Google Scholar
  43. 43.
    D. Pines and C. P. Slichter,Phys. Rev. 100, 1014 (1955).Google Scholar
  44. 44.
    A. A. Kokin and A. A. Izmest'ev,Russ. J. Phys. Chem. 39, 309 (1965).Google Scholar
  45. 45.
    A. Avogadro and M. Villa,J. Chem. Phys. 66, 2359 (1977).Google Scholar
  46. 46.
    B. P. Cowan,J. Phys. C 13, 4575 (1980).Google Scholar
  47. 47.
    J. P. Korb, M. Winterhalter, and H. M. McConnell,J. Chem. Phys. 80, 1059 (1984).Google Scholar
  48. 48.
    H. C. Torrey,Phys. Rev. 92, 962 (1953).Google Scholar
  49. 49.
    H. C. Torrey,Nuovo Cimento Suppl. 9, 95 (1958).Google Scholar
  50. 50.
    P. M. Richards, inLocal Properties at Phase Transitions (North-Holland, Amsterdam, 1976), p. 539.Google Scholar
  51. 51.
    L. E. Reichl,A Modern Course in Statistical Physics (University of Texas Press, 1980), Chapter 16.Google Scholar
  52. 52.
    F. E. Hoare, L. C. Jackson, and N. Kurti, eds.,Experimental Cryophysics (Butterworths, London, 1961), p. 374.Google Scholar
  53. 53.
    C. P. Lusher, D. Phil. Thesis, University of Sussex (1985), unpublished.Google Scholar
  54. 54.
    M. G. Richards, A. R. Andrews, C. P. Lusher, and J. Schratter,Rev. Sci. Instrum. 57, 404 (1986).Google Scholar
  55. 55.
    E. L. Hahn,Phys. Rev. 80, 580 (1950).Google Scholar
  56. 56.
    H. Y. Carr and E. M. Purcell,Phys. Rev. 94, 630 (1954).Google Scholar
  57. 57.
    A. J. Symonds, D. Phil. Thesis, University of Sussex (1965), unpublished.Google Scholar
  58. 58.
    M. G. Richards,Adv. Mag. Res. 5, 305 (1971).Google Scholar
  59. 59.
    J. R. Owers-Bradley, D. Phil. Thesis, University of Sussex (1978), unpublished.Google Scholar
  60. 60.
    M. F. Secca, D. Phil. Thesis, University of Sussex (1983), unpublished.Google Scholar
  61. 61.
    A. Abragam,The Principles of Nucelar Magnetism (Clarendon, Oxford, 1961), Chapter 2.Google Scholar
  62. 62.
    M. Sinvani, M. W. Cole, and D. L. Goodstein,Phys. Rev. Lett. 51, 188 (1983).Google Scholar
  63. 63.
    M. G. Richards,J. Phys. (Paris)39, C6–1342 (1978).Google Scholar
  64. 64.
    M. G. Richards, inPhase Transitions in Surface Films, J. G. Dash and J. Ruvalds, eds. (Plenum Press, New York, 1980).Google Scholar
  65. 65.
    K. Satoh and T. Sugawara,J. Low Temp. Phys. 38, 37 (1980).Google Scholar
  66. 66.
    H. Franco, H. Godfrin, and D. Thoulouze,Phys. Rev. B 31, 1699 (1985).Google Scholar
  67. 67.
    S. W. Van Sciver and O. E. Vilches,Phys. Rev. B 18, 285 (1978).Google Scholar
  68. 68.
    D. C. Look and I. J. Lowe,J. Chem. Phys. 44, 2995, 3437 (1966).Google Scholar
  69. 69.
    E. O. Stejskal and J. E. Tanner,J. Chem. Phys. 42, 288 (1965).Google Scholar
  70. 70.
    H. Godfrin, private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • C. P. Lusher
    • 1
  • M. F. Secca
    • 1
  • M. G. Richards
    • 1
  1. 1.School of Mathematical and Physical SciencesUniversity of SussexBrightonEngland

Personalised recommendations