Skip to main content
Log in

Properties of niobium-based Josephson tunneling elements in junction microstructures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe the fabrication and electrical characteristics of niobium oxide-barrier tunnel junctions with counterelectrodes of lead/lead alloy. Primary attention is directed to the experimental conditions necessary to obtain high-quality tunnel barriers as well as studies on characterizing the atomic structure of the barrier region. In order to study the tunnel barrier homogeneity in the tunneling region the magnetic field dependence of the critical Josephson current is investigated. TheI–V characteristics and dependence of the critical Josephson current on temperature are analyzed quantitatively by using a proximity effect model. Finally, we discuss experimental results on the improvement of junction quality by including traces of carbon in the rf argon plasma during the sputter cleaning of niobium base electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Clarke, inSuperconductor Applications: SQUIDsand Machines, B. B. Schwartz and S. Foner, eds. (Plenum Press, New York, 1977), p. 67.

    Google Scholar 

  2. R. L. Kautz and G. Constable,IEEE Trans. Mag. MAG 17 (1), 780 (1981).

    Google Scholar 

  3. F. Dettmann, W. Richter, G. Albrecht, and W. Zahn,Phys. Stat. Sol. (a)51,K185 (1979).

  4. F. R. Broome, S. I. Raider, A. Oosenbrug, R. Drake, and W. Walter,IEEE Trans. Electr. Dev. ED 27, 1998 (1980).

    Google Scholar 

  5. I. Lindau and W. E. Spicer,J. Appl. Phys. 45, 3720 (1974).

    Google Scholar 

  6. H. Schäfer, D. Bergner, and R. Gruehn,Z. Anorg. Allg. Chem.365, 31 (1969).

    Google Scholar 

  7. R. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972).

    Google Scholar 

  8. W. de Sorbo,Phys. Rev. 132, 107 (1963).

    Google Scholar 

  9. C. C. Koch, I. O. Scarbough, and D. M. Kroeger,Phys. Rev. 9, 888 (1974).

    Google Scholar 

  10. V. Keith and J. D. Leslie,Phys. Rev. B 18, 4739 (1978).

    Google Scholar 

  11. W. Schwartz, Ph. D. Thesis, Kernforschungszentrum Karlsruhe (1980).

  12. M. H. Frommer,J. Appl. Phys. 44, 5567 (1973).

    Google Scholar 

  13. V. A. Komaschko,Elektronnaja Technika Ser. 11976, 105.

  14. G. Albrecht, P. Weber, I. D. Woitowitsch, V. P. Sholob, G. A. Michallow, I. V. Nishenkowskii, and A. S. Politschuk, inProc. 20th Conf. Fiz. Nizkikh Temperatur (1978), Vol. 3, p. 229.

  15. P. C. Karulkar and J. E. Nordmann,J. Appl. Phys. 50, 7051 (1979).

    Google Scholar 

  16. G. Paterno, P. Rissman, and R. Vaglio,J. Appl. Phys. 46, 1419 (1975).

    Google Scholar 

  17. P. Rissman and T. Palholmen,Solid State Electr. 17, 611 (1974).

    Google Scholar 

  18. J. C. Villegier and G. Matheron, inProc. SQUID-Conf. West Berlin (1980), Vol. C3, p. 77.

  19. L. S. Hoel, W. H. Keller, J. E. Nordman, and A. C. Scott,Solid State Electr. 15, 1167 (1972).

    Google Scholar 

  20. A. Matsuda, T. Inamura, and H. Yoshikiyo,J. Appl. Phys. 49, 569 (1978);51, 4310 (1980).

    Google Scholar 

  21. H.-J. Koehler, K. Bluethner, S. Linke, P. Weber, and G. Albrecht,Phys. Stat. Sol. (a)49, 569 (1978).

    Google Scholar 

  22. I. M. Dimitrenko, S. I. Bondarenko, M. M. Loboda, N. A. Tschurikov, and G. V. Bezuglaja,Fiz. Nizkikh Temp. 6, 590 (1979).

    Google Scholar 

  23. J. Greiner,J. Appl. Phys. 42, 5151 (1971).

    Google Scholar 

  24. A. W. Kleinsasser and R. A. Buhrman,Appl. Phys. Lett. 37, 841 (1980).

    Google Scholar 

  25. J. E. Nordman,J. Appl. Phys. 40, 2111 (1969).

    Google Scholar 

  26. K.-H. Berthel, H.-J. Koehler, P. Seidel, K. Bluethner, and P. Weber,Fiz. Nizkikh Temp. 7, 154 (1981).

    Google Scholar 

  27. P. K. Hansma,J. Appl. Phys. 45, 1472 (1974).

    Google Scholar 

  28. L. S. Hoel, W. H. Keller, J. E. Nordman, and A. C. Scott,Solid State Electr. 15, 1167 (1972).

    Google Scholar 

  29. P. Schroen,J. Appl. Phys. 39, 2671 (1968).

    Google Scholar 

  30. R. F. Broom, R. B. Laibowitz, Th. O. Mohr, and W. Walter,IBM J. Res. Dev. 24, 212 (1980).

    Google Scholar 

  31. R. B. Laibowitz and J. J. Cuomo,J. Appl. Phys. 41, 2748 (1970).

    Google Scholar 

  32. R. B. Laibowitz and A. F. Mayadas,Appl. Phys. Lett. 20, 254 (1972).

    Google Scholar 

  33. C. Hawkins and J. Clarke,J. Appl. Phys. 47, 1616 (1976).

    Google Scholar 

  34. S. Basavaiah and J. H. Greiner,J. Appl. Phys. 47, 4201 (1976).

    Google Scholar 

  35. R. F. Broom, R. Jaggi, R. B. Laibowitz, Th. O. Mohr, and W. Walter, inProceedings LT-14, M. Krusius and M. Euorio, eds. (North-Holland, Amsterdam, 1975 Vol. 4, 172.

    Google Scholar 

  36. J. G. Simmons,J. Appl. Phys. 34, 238 (1963).

    Google Scholar 

  37. K. B. Duke, inTunneling Phenomena in Solids, E. Burstein and S. Lundquist, eds. (Plenum Press, New York, 1969), Chapter 4.

    Google Scholar 

  38. W. F. Brinkman, R. C. Dynes, and J. M. Rowell,J. Appl. Phys. 41, 1915 (1970).

    Google Scholar 

  39. H. Albrecht, G. Keller, and F. Thieme,Surf. Sci. 69, 677 (1977).

    Google Scholar 

  40. J. Richter and P. Seidel,Phys. Stat. Sol. (a)46, K25 (1978).

  41. D. G. Walmsley, E. L. Wolf, and J. W. Osmun,Thin Solid Films 62, 61 (1979).

    Google Scholar 

  42. J. Halbritter,Z. Phys. B 31, 19 (1978).

    Google Scholar 

  43. M. Grundner and J. Halbritter,J. Appl. Phys. 51, 397 (1980).

    Google Scholar 

  44. P. C. Karulkar and J. E. Nordman,J. Vac. Sci. Technol. 17, 462 (1980).

    Google Scholar 

  45. J. Halbritter,Solid State Commun. 34, 675 (1980).

    Google Scholar 

  46. M. Cocito, V. Laquaniti, S. Palumbo, and S. Sturtese, inProc. Vacuum Conf. (Cannes, 1980), p.495.

  47. V. I. Saporoshtchenko, V. V. Kanzel, N. V. Kazakova, A. N. Kojukov, U. P. Kusnezov, and Ju. D. Tshistjakov inKryoelektronnie komponenty EVM (Inst. Kib., Kiev, 1978), p. 84.

  48. D. Stutzle and K. E. Heusler,Z. Phys. Chem. 65, 201 (1969).

    Google Scholar 

  49. R. F. Janninck and D. H. Whitmore,J. Chem. Phys. 37, 2750 (1967).

    Google Scholar 

  50. P. C. Karulkar and J. E. Nordman, inSymp. on Applied Surface Analysis (Dayton, 1979), paper A-5.

  51. K.-H. Koehler, P. Seidel, P. Weber, K. Bluethner, S. Linke, and K.-H. Berthel,Phys. Stat. Sol., to appear.

  52. W. L. McMillan,Phys. Rev. 175, 537 (1968).

    Google Scholar 

  53. P. W. Wyatt, R. C. Baker, and A. Yelon,Phys. Rev. B 6, 4169 (1972).

    Google Scholar 

  54. P. Seidel and J. Richter,Phys. Stat. Sol)96, 189 (1980).

    Google Scholar 

  55. P. Seidel and J. Richter,Phys. Stat. Sol.)99, 607 (1980).

    Google Scholar 

  56. W. Haberkorn and J. Richter,J. Low Temp. Phys. 35, 627 (1979).

    Google Scholar 

  57. V. Ambegaokar and A. Baratoff,Phys. Rev. Lett. 10, 486;11, 104 (1963).

    Google Scholar 

  58. G. P. van der Mey, B. H. Kes, and D. de Klerk,Physica B 95, 369 (1978).

    Google Scholar 

  59. J. Richter and P. Seidel,Exp. Techn. Phys. 26, 217 (1978).

    Google Scholar 

  60. A. Barone, G. Paterno, M. Russo, and Vaglio,Phys. Stat. Sol.)41, 393 (1977).

    Google Scholar 

  61. H.-J. Koehler, U. Mueller, P. Weber, and K. Bluethner,Phys. Stat. Sol.)56, 521 (1979).

    Google Scholar 

  62. H. Dimigen and H. Luethje,Phillips Technische Rundschau 19, 68 (1976).

    Google Scholar 

  63. P. Weber and S. Linke, inProc. 7. Tagung Hochvakuum, Grenzflächen, dünne Schichten (Dresden, 1981), Vol. 2, p. 344.

  64. A. N. Christensen, S. E. Rasmussen, and G. Thirup,J. Solid State Chem. 34, 45 (1980).

    Google Scholar 

  65. L. E. Toth,Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).

    Google Scholar 

  66. D. Dew-Hughes and R. Jones,Appl. Phys. Lett. 36, 856 (1980).

    Google Scholar 

  67. P. Weber, S. Linke, and G. Oertel,Phys. Stat. Sol. to appear.

  68. F. Dettmann and P. Weber,Phys. Stat. Sol.)60, 85 (1980).

    Google Scholar 

  69. V. Dettmann, P. Weber, K. Bluethner, and H.-J. Koehler, inProc. 12. Int. Symp. Tieftemperaturphysik und Kryoelektronik (Georgenthal, 1980), p. 32.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, G., Richter, J. & Weber, P. Properties of niobium-based Josephson tunneling elements in junction microstructures. J Low Temp Phys 48, 61–83 (1982). https://doi.org/10.1007/BF00681718

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681718

Keywords

Navigation