Skip to main content
Log in

Quasiparticle tunneling through rare earth trihydroxide barriers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Symmetric tunneling junctions with 4000-Å-thick Pb electrodes and polycrystalline insulating barriers of Lu(OH)3, Er(OH)3, and Ho(OH)3 have been fabricated. In bulk, these three rare earth trihydroxides are nonmagnetic, antiferromagnetic (T N<1.1 K), and ferromagnetic (Tc=2.54 K), respectively. Tunneling resistances ranged from 600 to greater than 40,000 Ω with a junction area of 6.25×10−2 cm2. Single-particle tunneling characteristics of these junctions were always broadened relative to the characteristics of Pb-PbO-Pb junctions, although the ratio of the zero-bias tunneling resistance to the normal tunneling resistance in some instances was of the order of 1000. A threefold splitting of the conductance peak at the gap was observed only in junctions with Ho(OH)3 barriers. The gap peak of junctions with Er(OH)3 barriers was broadened significantly relative to that of junctions with Lu(OH)3 barriers. From measurements of the temperature and magnetic field dependences of the tunneling conductance it is argued that the splitting in junctions with Ho(OH)3 barriers is consistent with the existence of a peak in the electronic density of states at an energy below that of the gap of each of the electrodes. This peak is believed to be the signature of a bound state near the barrier where the pair potential is depressed by virtue of the exchange coupling between the spins of the superconducting electrons and the localized spins of the barrier. Qualitative interpretations of the data support the view that the observed structure in Ho(OH)3 barrier junctions is neither a consequence of intrinsic gap anisotropy in Pb nor of inelastic magnon-assisted tunnelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg,Zh. Eksp. Teor. Fiz. 31, 202 (1956) [Soc. Phys. JETP 4, 153 (1957)].

    Google Scholar 

  2. A. A. Abrikosov and L. P. Gor'kov,Zh. Eksp. Teor. Fiz. 39, 1781 (1960) [Sov. Phys. JETP 12, 1243 (1961)].

    Google Scholar 

  3. Ø. Fischer and M. B. Maple, eds.,Superconductivity in Ternary Compounds (Springer, Berlin, 1982).

    Google Scholar 

  4. C. Uher, Roy Clarke, and I. K. Schuller,Phys. Rev. B 30, 453 (1984).

    Google Scholar 

  5. G. Deutscher and P. G. de Gennes, inSuperconductivity, Vol. I, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 1005.

    Google Scholar 

  6. P. G. de Gennes,Phys. Lett. 23, 10 (1966).

    Google Scholar 

  7. J. J. Hauser,Phys. Rev. 164, 558 (1967); J. J. Hauser, H. C. Theuerer, and N. R. Werthamer,Phys. Rev. 142, 118 (1966); G. Deutscher and F. Meunier,Phys. Rev. Lett. 22, 395 (1969).

    Google Scholar 

  8. A. M. Goldman, C. G. Kuper, and O. T. Valls,Phys. Rev. Lett. 52, 1340 (1984).

    Google Scholar 

  9. A. H. Silver and J. E. Zimmermann,Appl. Phys. Lett. 10, 142 (1967).

    Google Scholar 

  10. A. L. Belyanin, V. A. Zhikharev, and A. R. Kessel,Zh. Eksp. Teor. Fiz. 79, 1850 (1980) [Sov. Phys. JETP 53, 935 (1980)]; A. L. Belyanin, A. R. Kessel, and V. A. Zhikarev,J. Phys. C 15, 6021 (1982).

    Google Scholar 

  11. K. Baberschke and S. E. Barnes,J. Phys. C 10, 2865 (1977).

    Google Scholar 

  12. K. Baberschke, K. Bures, and S. E. Barnes,Phys. Rev. Lett. 53, 99 (1984).

    Google Scholar 

  13. D. C. Tsui, R. E. Deitz, and L. R. Walker,Phys. Rev. Lett. 27, 1729 (1971).

    Google Scholar 

  14. F. E. Stageberg, R. Cantor, A. M. Goldman, and G. B. Arnold,Phys. Rev. B, to be published.

  15. E. L. Wolf and G. B. Arnold,Phys. Rep. 91, 31 (1982), and references therein.

    Google Scholar 

  16. Hiroyuki Shiba,Prog. Theor. Phys. 40, (1968); R. Kummel,Phys. Rev. B 6, 2617 (1972).

  17. P. G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

    Google Scholar 

  18. P. Pincus,Phys. Rev. 158, 346 (1967).

    Google Scholar 

  19. G. B. Arnold, private communication.

  20. J. L. Bostock and M. L. A. MacVicar, inAnisotropy Effects in Superconductors, H. W. Weber, ed. (Plenum Press, New York, 1977), p. 213, and references therein.

    Google Scholar 

  21. P. Holzer, J. Keller, and P. Fulde,J. Low Temp. Phys. 14, 247 (1974).

    Google Scholar 

  22. G. T. K. Swami, F. E. Stageberg, and A. M. Goldman,J. Vac. Sci. Technol. A 2, 767 (1984).

    Google Scholar 

  23. C. A. Catanese and H. E. Meissner,Phys. Rev. B 8, 2060 (1973).

    Google Scholar 

  24. W. P. Wolf, private communication.

  25. W. L. McMillan and J. M. Rowell, inSuperconductivity, Vol. I, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 561.

    Google Scholar 

  26. Y. Goldstein,Phys. Lett. 12, 169 (1964).

    Google Scholar 

  27. G. I. Rochlin,Phys. Rev. 153, 513 (1967).

    Google Scholar 

  28. P. W. Anderson,J. Phys. Chem. Solids 11, 26 (1956); D. Markowitz and L. P. Kadanoff,Phys. Rev. 131, 563 (1963).

    Google Scholar 

  29. D. Rainer and G. Bergmann,J. Low Temp. Phys. 14, 501 (1974).

    Google Scholar 

  30. J. M. Freidt, G. K. Shenoy, and B. D. Dunlap,J. Phys. (Paris)40, C2–243 (1979).

    Google Scholar 

  31. A. F. Andreev,Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)].

    Google Scholar 

  32. J. Bardeen, R. Kummel, A. E. Jacobs, and L. Tewordt,Phys. Rev. 187, 556 (1969); R. Kummel,Phys. Rev. B 3, 784 (1971); C.-R. Hu,Phys. Rev. B 12, 3635 (1975); G. Eilenberger and A. E. Jacobs,J. Low Temp. Phys. 20, 479 (1975).

    Google Scholar 

  33. B. Bar-Sagi and C. G. Kuper,Phys. Rev. Lett. 28, 1556 (1972);J. Low Temp. Phys. 16, 73 (1974).

    Google Scholar 

  34. R. E. Doezma, J. N. Huffaker, S. Whitmore, J. Slinkman, and W. E. Lawrence,Phys. Rev. Lett. 53, 714 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stageberg, F.E., Cantor, R., Goldman, A.M. et al. Quasiparticle tunneling through rare earth trihydroxide barriers. J Low Temp Phys 60, 437–456 (1985). https://doi.org/10.1007/BF00681668

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681668

Keywords

Navigation