Journal of Low Temperature Physics

, Volume 60, Issue 1–2, pp 19–27 | Cite as

The superconducting transition temperature for La1−x Gd x

  • M. Gulácsi
  • Zs. Gulácsi
  • M. Crisan


The deviation of the superconducting transition temperature from the Abrikosov-Gorkov behavior in the case of La1−xGd x is explained considering the presence of short range spin-glass at low temperature. The theoretical results show good agreement with the experimental data.


Freezing Temperature Superconducting Transition Temperature Magnetic Impurity Paramagnetic Impurity Infinite Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. T. Matthias, H. Suhl, and E. Corenzwit,Phys. Rev. Lett. 1, 92 (1958); R. A. Hein, R. L. Falge, Jr., B. T. Matthias, and C. Corenzwit,Phys. Rev. Lett. 2, 500 (1959).CrossRefADSGoogle Scholar
  2. 2.
    J. E. Crow and R. D. Parks,Phys. Lett. 21, 378 (1966).CrossRefADSGoogle Scholar
  3. 3.
    J. E. Crow, R. P. Guertin, and R. D. Parks, inProceedings of the Xth International Conference on Low Temperature Physics (Moscow, 1967), Vol. IIA, p. 301.Google Scholar
  4. 4.
    A. A. Abrikosov and L. P. Gorkov,Zh. Eksp. Teor. Fiz. 39, 1781 (1960).Google Scholar
  5. 5.
    B. T. Matthias, H. Suhl, and E. Corenzwit,Phys. Rev. Lett. 1, 449 (1958).CrossRefADSGoogle Scholar
  6. 6.
    D. K. Finnemore, D. C. Hopkins, and P. E. Plamer,Phys. Rev. Lett. 15, 891 (1965).CrossRefADSGoogle Scholar
  7. 7.
    K. H. Bennemann,Phys. Rev. Lett. 7, 438 (1966).CrossRefADSGoogle Scholar
  8. 8.
    M. Gulácsi, Zs. Gulácsi, and M. Crisan,J. Low Temp. Phys. 50, 369 (1983).Google Scholar
  9. 9.
    B. I. Kochelaev, L. R. Tagirov, and M. G. Kusainov,Zh. Eksp. Teor. Fiz. 76, 578 (1979).Google Scholar
  10. 10.
    M. A. Ruderman and C. Kittel,Phys. Rev. 96, 99 (1954); T. Kasuya,Prog. Theor. Phys. 16, 45 (1956); K. Yoshida,Phys. Rev. 106, 893 (1957).CrossRefADSGoogle Scholar
  11. 11.
    A. A. Abrikosov and S. I. Moukhin,J. Low Temp. Phys. 33, 207 (1978).CrossRefGoogle Scholar
  12. 12.
    A. A. Abrikosov,Adv. Phys. 29, 869 (1980).CrossRefADSGoogle Scholar
  13. 13.
    M. E. Fischer and I. S. Langer,Phys. Rev. Lett. 20, 665 (1968); O. Entin-Wohlman, G. Deutscher, and R. Orbach,Phys. Rev. B11, 219 (1975).CrossRefADSGoogle Scholar
  14. 14.
    M. Abramowitz and I. Stegun,Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 1964.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. Gulácsi
    • 1
  • Zs. Gulácsi
    • 1
  • M. Crisan
    • 2
  1. 1.Institute of Isotopic and Molecular TechnologyClujRomania
  2. 2.Department of PhysicsCluj UniversityClujRomania

Personalised recommendations