Journal of Low Temperature Physics

, Volume 61, Issue 3–4, pp 193–211 | Cite as

Ultrasonic propagation in solid H2: The effects of orientational ordering

  • R. Banke
  • M. Calkins
  • H. Meyer


A report is given of the observation below 1 K of the sound attenuation δα expected from progressive orientational ordering in hcp H2 with ortho concentrationsX<0.53. The experiments were carried out at 10 and 30 MHz. The amplitude of this effect depends on the coupling between the lattice vibrations and the molecular orientation, and should be maximum when the acoustic angular frequency ω is comparable with the orientational relaxation rate τ−1. The average rate can be roughly estimated from NMR longitudinal relaxation timeT 1 measurements. Such a maximum for δα was indeed observed in the expected temperature range. At high enough temperatures, δα was found to be proportional toT 1 −1 . which is consistent with predictions in the high temperature limit. Furthermore, the transition between the hcp and the fcc phases forX>0.53 is studied by means of the large changes in the sound propagation at the transition, and the phase diagram thus obtained is compared with results from x-ray and pressure measurements. The new observations explain some previous discrepancies in results using different methods. The difference between solid H2 and D2 regarding the stabilization of the cubic structure above the orientational ordering transition is also discussed. Calculations of the respective energy barriers ΔE to be overcome during the martensitic transition are suggested.


Attenuation Energy Barrier Relaxation Rate Angular Frequency Temperature Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. F. Silvera,Rev. Mod. Phys. 52, 393 (1980).Google Scholar
  2. 2.
    J. Van Kranendonk,Solid Hydrogen (Plenum Press, New York, 1983.Google Scholar
  3. 3.
    A. B. Harris and H. Meyer,Can. J. Phys. 63, 3 (1985).Google Scholar
  4. 4.
    A. F. Schuch, R. L. Mills, and D. A. Depatie,Phys. Rev. 165, 1032 (1968).Google Scholar
  5. 5.
    J. F. Jarvis, H. Meyer, and D. Ramm,Phys. Rev. 178, 1461 (1969).Google Scholar
  6. 6.
    J. V. Gates, P. R. Ganfors, B. A. Fraas, and R. O. Simmons,Phys. Rev. B 19, 3667 (1979).Google Scholar
  7. 7.
    M. Clouter and H. P. Gush,Phys. Rev. Lett. 15, 200 (1965).Google Scholar
  8. 8.
    R. Wanner, H. Meyer, and R. L. Mills,J. Low Temp. Phys. 13, 337 (1973).Google Scholar
  9. 9.
    N. S. Sullivan, M. Devoret, B. P. Cowan, and C. Urbina,Phys. Rev. B 17, 5016 (1978).Google Scholar
  10. 10.
    C. A. Garland, inPhysical Acoustics, Vol. 7, W. P. Mason and R. V. Thurston, eds. (Academic Press, New York, 1970), p. 51.Google Scholar
  11. 11.
    B. Luthi, T. J. Moran, and R. J. Pollina,J. Phys. Chem. Solids 31, 1741 (1970).Google Scholar
  12. 12.
    K. Kawasaki,Int. J. Magnetism 1, 171 (1971).Google Scholar
  13. 13.
    S. Washburn, M. Calkins, H. Meyer, and A. B. Harris,J. Low Temp. Phys. 53, 585 (1983).Google Scholar
  14. 14.
    N. S. Sullivan and D. Esteve,Physica 107(B+C), 189 (1981).Google Scholar
  15. 15.
    J. R. Gaines, Y. C. Shi, and J. H. Constable,Phys. Rev. B 17, 1028 (1978).Google Scholar
  16. 16.
    A. B. Harris,Phys. Rev. B 2, 3495 (1970).Google Scholar
  17. 17.
    M. Fujio, J. Hama, and T. Nakamura,Prog. Theor. Phys. 54, 293 (1975).Google Scholar
  18. 18.
    G. W. Smith and R. M. Housley,Phys. Rev. 117, 732 (1960).Google Scholar
  19. 19.
    L. I. Amstutz, H. Meyer, S. M. Myers, and D. C. Rorer,Phys. Rev. 181, 589 (1969).Google Scholar
  20. 20.
    J. L. Yarnell, R. L. Mills, and A. F. Schuch,Sov. J. Low Temp. Phys. 1, 366 (1975).Google Scholar
  21. 21.
    D. G. Haase, J. O. Sears, and R. A. Orban,Solid State Commun. 35, 891 (1980).Google Scholar
  22. 22.
    R. W. Hill and B. W. A. Ricketson,Phil. Mag. 45, 277 (1954).Google Scholar
  23. 23.
    G. Ahlers and W. H. Orttung,Phys. Rev. 133A, 1642 (1964).Google Scholar
  24. 24.
    A. B. Harris, S. Washburn, and H. Meyer,J. Low Temp. Phys. 50, 151 (1983).Google Scholar
  25. 25.
    R. Wanner and H. Meyer,J. Low Temp. Phys. 11, 715 (1973).Google Scholar
  26. 26.
    M. Calkins and H. Meyer,J. Low Temp. Phys. 57, 265 (1964).Google Scholar
  27. 27.
    B. Golding,Phys. Rev. Lett. 84, 1102 (1975).Google Scholar
  28. 28.
    H. Nagai and T. Nakamura,Prog. Theor. Phys. 37, 641 (1967).Google Scholar
  29. 29.
    J. Felsteiner,Phys. Rev. Lett. 15, 1025 (1965).Google Scholar
  30. 30.
    J. C. Raich and R. D. Etters,J. Phys. Chem. Solids 29, 1561 (1968).Google Scholar
  31. 31.
    L. H. Nosanow, cited in Ref. 30.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • R. Banke
    • 1
  • M. Calkins
    • 1
  • H. Meyer
    • 1
  1. 1.Department of PhysicsDuke UniversityDurham

Personalised recommendations