Skip to main content
Log in

Energy dependence of the effective mass in liquid3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The striking behavior of the specific heat of liquid3He as function of temperature at low temperatures requires the effective massm* to change rapidly with temperature; this can be translated into a rapid variation with energy,m*/m dropping from itsE=0 value to ∼1 over the temperature range ≲0.5 K. We explore this effect in a model in which the enhancement of the effective mass is due to coupling to spin fluctuations. At very lowT≲50 mK, the variation in specific heat results fromT 3 lnT terms. The free energy, on the other hand, does not containT 2 lnT terms in its dependence on the magnetic field, implying that the susceptibility, which is essentiallym*/(1+F a0 ), also does not have such logarithmic terms. Consequently, ifm* varies with energy, so mustF a0 , so as to leave the susceptibility free of this rapid variation. The rough constancy ofm*/(1+F a0 ) seems empirically to hold to higher energies and temperatures. Ifm*/m drops, with increasing energy, to unity, the spin-fluctuation theory, which is described in terms of Landau parameters at the Fermi surface, goes over into the paramagnon theory. The rapid change with energy of the effective interactions can be understood within the framework of response theory as a “shaking off” of the relevant collective modes with increasing frequency of the imposed oscillations. The changes in effective interactions have consequences for the interpretation of experiments involving inelastic neutron scattering from liquid3He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson,Physics 2, 1 (1965).

    Google Scholar 

  2. R. Balian and D. R. Fredkin,Phys. Rev. Lett. 15, 480 (1965).

    Google Scholar 

  3. S. Engelsberg and P. M. Platzman,Phys. Rev. 148, 103 (1966).

    Google Scholar 

  4. M. J. Buckingham and M. R. Schafroth,Proc. Phys. Soc. (London)A 67, 828 (1954).

    Google Scholar 

  5. G. M. Eliashberg,Zh. Eksp. Teor. Fiz. 43, 1105 (1962) [Sov. Phys.—JETP 16, 780 (1962)].

    Google Scholar 

  6. C. J. Pethick, inLectures in Theoretical Physics, Vol. XI-B, K. Mahanthappa and W. E. Britten, eds. (Gordon and Breach, New York, 1969).

    Google Scholar 

  7. S. Doniach and S. Engelsberg,Phys. Rev. Lett. 17, 750 (1966).

    Google Scholar 

  8. S. Doniach, S. Engelsberg, and M. J. Rice, inProc. Xth Int. Conf. on Low Temp. Phys., M. P. Malkov, L. P. Pitaevski, and Yu. D. Anufrieyev, eds. (Viniti, Moscow, 1967), Vol. I, p. 356.

    Google Scholar 

  9. N. F. Berk and J. R. Schrieffer,Phys. Rev. Lett. 17, 433 (1966).

    Google Scholar 

  10. Gordon Baym and C. J. Pethick, inThe Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, 1978) p. 1.

  11. G. Grimvall, inSpecial Topics in Solid State Physics, Vol. XVI, E. P. Wohlfarth, ed. (North-Holland, 1981).

  12. R. Balian and C. T. DeDominicis,Ann. Phys. (N.Y.)62, 229 (1971).

    Google Scholar 

  13. C. J. Pethick and G. M. Carneiro,Phys. Rev. A 7, 304 (1973).

    Google Scholar 

  14. G. M. Carneiro and C. J. Pethick,Phys. Rev. B 16, 1933 (1977).

    Google Scholar 

  15. J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975); A. C. Mota, R. P. Platzeck, R. Rapp, and J. C. Wheatley,Phys. Rev. 177, 266 (1969).

    Google Scholar 

  16. T. A. Alvesalo, T. Haavasoja, P. C. Main, M. T. Manninen, J. Ray, and L. M. M. Rehm,Phys. Rev. Lett. 43, 1509 (1979); T. A. Alvesalo, T. Haavasoja, M. T. Manninen, and A. T. Soinne,Phys. Rev. Lett. 44, 1076 (1980).

    Google Scholar 

  17. W. F. Brinkman and S. Engelsberg,Phys. Rev. 169, 417 (1968).

    Google Scholar 

  18. G. E. Brown and Mannque Rho,Nucl. Phys.,A372, 397 (1981).

    Google Scholar 

  19. C. Mahaux and H. Ngô,Phys. Lett. 100B, 285 (1981).

    Google Scholar 

  20. K. Sköld, C. A. Pelizzari, R. Kleb, and G. E. Ostrowski,Phys. Rev. Lett. 37, 842 (1976); K. Sköld and C. A. Pelizzari,J. Phys. C 11, L589 (1978).

    Google Scholar 

  21. C. H. Aldrich III and D. Pines,J. Low Temp. Phys. 32, 689 (1978).

    Google Scholar 

  22. K. Bedell and D. Pines,Phys. Rev. Lett. 45, 39 (1980).

    Google Scholar 

  23. S. Babu and G. E. Brown,Ann. Phys. (N.Y.)78, 1 (1973).

    Google Scholar 

  24. M. T. Béal-Monod,J. Low Temp. Phys. 37, 123 (1979).

    Google Scholar 

  25. D. F. Brewer, J. G. Daunt, and A. K. Streedhar,Phys. Rev. 115, 836 (1959).

    Google Scholar 

  26. T. F. Roberts, R. H. Sherman, S. G. Sydoriak, and F. G. Brickwedde, inProgress in Low Temperature Physics, Volume 4, C. J. Gorter, ed. (North-Holland, 1964), p. 480.

  27. J. Wilks,The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967).

    Google Scholar 

  28. S. Fantoni, V. R. Pandharipande, and K. E. Schmidt,Phys. Rev. Lett. 48, 878 (1982).

    Google Scholar 

  29. G. E. Brown, V. Mishra, and C. J. Pethick, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Also State University of New York, Stony Brook, New York. Supported in part by U.S. D.O.E. Contract DE-AC02-76ER13001.

Also University of Illinois at Urbana—Champaign. Supported in part by U.S. NSF Grant DMR 81-21273.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, G.E., Pethick, C.J. & Zaringhalam, A. Energy dependence of the effective mass in liquid3He. J Low Temp Phys 48, 349–372 (1982). https://doi.org/10.1007/BF00681578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681578

Keywords

Navigation