Skip to main content
Log in

Surface acoustic wave determination of the superconducting fraction of a Nb3Ge film

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Surface acoustic waves at 1200 MHz were used to investigate the properties of a 0.5-µm-thick film of Nb3Ge. This film was rf-sputtered onto a substrate consisting of a piezoelectrically active 3.5-µm AlN layer which was chemically vapor-deposited over a sapphire substrate. The attenuation coefficient α of the surface acoustic waves was measured from 0.8 to 30 K. The raw data are analyzed to eliminate interference effects due to splitting of the wave into two components. One of these is at the surface of the film and the other may be a “surface skimming bulk mode” which is at the film-substrate interface. The resultant curve of attenuation versus temperature in the superconducting region is then used to determine the distribution function of the superconducting transition temperature of the film. Although the film starts to become superconducting at 21 K and the majority of the film appears to become superconducting at 18 K, it is also found that a significant amount of the film does not become superconducting until 10 K. The difference between the attenuation measured in the normal state and the superconducting state is used to obtain the electron mean free path in the film. This is compared to values obtained from electrical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Testardi, InPhysical Acoustics, Vol. X, W. P. Mason, ed. (Academic Press, New York, 1973), p. 193.

    Google Scholar 

  2. J. R. Gavaler, M. A. Janocko, A. Patterson, and C. K. Jones,J. Appl. Phys. 42, 54 (1971).

    Google Scholar 

  3. J. R. Gavaler, M. A. Janocko, and C. K. Jones,Appl. Phys. Lett. 19, 305 (1971).

    Google Scholar 

  4. J. R. Gavaler,Appl. Phys. Lett. 23, 480 (1973).

    Google Scholar 

  5. L. R. Testardi, J. H. Wernick, and W. A. Royer,Solid State Commun. 15, 1 (1974).

    Google Scholar 

  6. K. L. Ngai and T. L. Reinecke,Phys. Rev. B 16, 1077 (1977).

    Google Scholar 

  7. F. Adao,Phys. Lett. 30A, 409 (1969).

    Google Scholar 

  8. E. Kratzig, K. Walther, and W. Schilz,Phys. Lett. 30A, 411 (1969).

    Google Scholar 

  9. W. E. Bailey and B. J. Marshal,Phys. Rev. B 19, 3467 (1979).

    Google Scholar 

  10. D. A. Robinson, K. Maki, and M. Levy,Phys. Rev. Lett. 32, 709 (1974).

    Google Scholar 

  11. J. K. Liu, K. M. Laken, and K. L. Wang,J. Appl. Phys. 46, 3703 (1975).

    Google Scholar 

  12. J. R. Gavaler, J. K. Hulm, and M. A. Janocko, and C. K. Jones,J. Vac. Sci. Technol. 6, 177 (1968).

    Google Scholar 

  13. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  14. A. R. Sweedler, D. E. Cox, S. Moehlecke, R. H. Jones, L. R. Newkirk, and F. A. Valencia,J. Low Temp. Phys. 24, 645 (1976).

    Google Scholar 

  15. J. R. Gavaler, M. A. Janocko, and C. K. Jones,J. Vac. Sci. Technol. 10, 17 (1973).

    Google Scholar 

  16. S. Kirkpatrick,Phys. Rev. Lett. 27, 1722 (1971).

    Google Scholar 

  17. B. T. Matthias, T. N. Geballe, R. H. Willens, E. Corenzwit, and G. W. Hall, Jr.,Phys. Rev. 139, A1501 (1965).

    Google Scholar 

  18. D. R. Snider, H. P. Fredricksen, and S. C. Schneider,J. Appl. Phys. 52, 3215 (1981).

    Google Scholar 

  19. M. Tachiki, H. Salvo, Jr., D. A. Robinson, and M. Levy,State Commun. 17, 653 (1975).

    Google Scholar 

  20. T. A. Viktorov,Rayleigh and Lamb Waves (Plenum Press, New York, 1967).

    Google Scholar 

  21. B. M. Klein, L. L. Boyer, D. A. Papaconstantopoulos, and L. F. Mattheiss,Phys. Rev. B 18, 6411 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the U.S. Air Force Office of Scientific Research under Grant No. AFOSR 81-0002.

Research supported by the U.S. Air Force Office of Scientific Research under Contract No. AFOSR F49620-78-C-0031.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvo, H., Fredricksen, H.P., Levy, M. et al. Surface acoustic wave determination of the superconducting fraction of a Nb3Ge film. J Low Temp Phys 48, 189–208 (1982). https://doi.org/10.1007/BF00681570

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681570

Keywords

Navigation