Skip to main content
Log in

On the bending stress distribution at the tip of a stationary crack from Reissner's theory

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A general solution is developed for the symmetric bending stress distribution at the tip of a crack in a plate taking shear deformation into account through Reissner's theory. The solution is obtained in terms of polar coordinates at the crack tip and includes the complete class of solutions satisfying all the three boundary conditions along the crack. The solution has arbitrary multiplicative constants and in specific problems, these constants can be determined from conditions on the exterior boundary by well-known numerical techniques such as collocation, successive integration. Results of a numerical solution for a square plate with a central crack subject to uniaxial bending are presented along with a critical discussion of the sensitivity of the numerical solution which is associated with the exponential character of Bessel terms in this higher order analytical solution.

Résumé

On développe une solution générale à la distribution symétrique de contraintes de flexion à l'extrémité d'une entaille dans une plaque soumise à une déformation de cisaillement, en tenant compte de la théorie de Reissner. La solution est obtenue sous forme de coordonnées polaires à l'extrémité de la fissure et comporte l'ensemble des solutions satisfaisant à toutes les conditions de frontières le long de la fissure. La solution comporte des constantes multiplicatives arbitraires et, dans des problèmes spécifiques, ces constantes peuvent être déterminées à partir des conditions de confinement extérieur à l'aide de techniques numériques bien connues telles que la collocation ou l'intégration successive. Les résultats d'une solution numérique dans le cas d'une plaque carrée comportant une fissure centrale soumise à flexion uniaxiale sont présentés en même temps qu'une discussion critique de la sensibilité de la solution numérique associée au caractère exponentiel des termes de Bessel dans cette solution analytique d'une ordre supérieur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2a :

crack length

h :

plate thickness

k 2 :

\(k^2 = \frac{5}{2}\left( {\frac{a}{h}} \right)^2 \)

E :

Young's Modulus

v :

Poisson's ratio

D :

bending rigidity of plate,Eh 3/12(1-v 2)

M 0 :

reference bending moment

σ0 :

extreme fibre stress due toM 0, 6M 0/h 2

r, θ:

polar coordinates with crack tip as the origin (Fig. 1), r being nondimensionalized with respect toa

W :

normal displacement, nondimensionalized with respect toM 0 a 2/D

M r ,M θ ,M :

bending and twisting moments per unit length of plate element (Fig. 1), nondimensionalized with respect toM 0

σ r , σθ :

transverse shear forces per unit length of plate element (Fig. I), nondimensionalized with respect toM 0/a

σ r σθ τ rθ :

stresses on that surface where a positive moment produces tension, nondimensionalized with respect to σ0

χ:

a stress function in Reissner's theory, nondimensionalized with respect toM 0

K (b) :

bending stress intensity factor

K(b) :

Modified Bessel Functions of first and second kinds respectively

ϕ(μ,m):

(μ + 1)(μ + 2)...(μ +m)form5≠ 0 = 1 form = 0

θ:

Gamma function

References

  1. J.K. Knowles and N.M. Wang,Journal of Mathematics and Physics, 39 (1960) 223–236.

    Google Scholar 

  2. R.J. Hartranft and G.C. Sih,Journal of Mathematics and Physics, 47 (1968) 276–291.

    Google Scholar 

  3. N.M. Wang,Journal of Mathematics and Physics, 47 (1968) 371–390.

    Google Scholar 

  4. M.L. Williams,Journal of Applied Mechanics, 24 (1957) 109–114.

    Google Scholar 

  5. M.L. Williams,Journal of Applied Mechanics, 28 (1961) 78–82.

    Google Scholar 

  6. E. Reissner,Journal of Applied Mechanics, 12 (1945) A69-A77.

    Google Scholar 

  7. N.W. McLachlan,Bessel Functions for Engineers, Clarendon Press (1955).

  8. P.D. Mangalagiri, B. Dattaguru and T.S. Ramamurthy,Proceedings of International Conference on Fracture Mechanics and Technology, Hongkong, March 1977, 1227–1239.

  9. S.A. Hussainy, “Analysis of Saint Venant torsion and analogous problems with rectilinear boundaries”, Ph.D. Thesis, Department of Aeronautics, Indian Institute of Science, Bangalore, India (1966).

    Google Scholar 

  10. J.F. Steffenson,Interpolation, II edition, Chelsea Publishing Company (1950) 103.

  11. W. K. Wilson, inMechanics of Fracture, Volume 1, Edited by G.C. Sih, Noordhoff International Publishing, Leyden (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Structures Division

Materials Division

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, M.V.V., Raju, K.N. & Viswanath, S. On the bending stress distribution at the tip of a stationary crack from Reissner's theory. Int J Fract 17, 537–552 (1981). https://doi.org/10.1007/BF00681555

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681555

Keywords

Navigation