Skip to main content

Electric and magnetic properties of the Kondo-lattice compound CeCu2Si2

Abstract

Electric, magnetic, and thermoelectric properties of Ce x La1−x Cu2Si2 (0⩽x⩽1) compounds have been studied over a wide temperature interval 0.04 ⩽T⩽300 K in magnetic fieldsH⩽40 kOe. The paramagnetic-magnetic ordering transition temperatureT M is found to rise from ∼0.32 K for cerium concentrationx=0.2 to 1.6 K forx=0.6. A further increase inx from ∼0.8 to 1.0 leads to a decrease inT M . Simultaneously, the susceptibility kink is smeared out and atx≈1.0 it is transformed into temperature-independent enhanced Pauli paramagnetism. The magnetic phase diagram has been found to be similar to that proposed by Doniach for the one-dimensional Kondo-necklace model. The Kondo-lattice compound CeCu2Si2 exhibits a superconducting transition atT c ⋍0.5 K. The variation of the magnetic properties of Ce x La1−x Cu2Si2 from magnetic ordering at 0.2≲x≲0.8 to the nonmagnetic superconducting state atx → 1.0 is caused by the crossover from the magnetic regimeT RKKYT K (in which the RKKY temperatureT RKKY exceeds the Kondo temperatureT K) to the nonmagnetic singlet ground state corresponding to the situation whenT KT RKKY. This crossover is accompanied by a sharp increase in the low-temperature Hall coefficientR H(T) in Ce x La1−x Cu2Si2 compounds atx → 1. At the same time, a minimum of the negative Seebeck coefficient with a high amplitude appears at 10<T<100 K. The anomalous low-temperature properties of Kondo lattices have been shown to be due to the rise of the narrow Abrikosov-Suhl resonance in the vicinity of the Fermi level εF as the temperature is lowered fromTT K toTT K. This resonance has a giant amplitude in concentrated Kondo systems and is responsible for the existence in CeCu2Si2 of heavy fermions with extremely low degeneracy temperatureT*F estimated to be 10 K from theR H versusT curve. Further increase of the Kondo coupling constantJ in CeCu2Si2 under pressure induces an increase in (1) the Hall coefficientR H(T=4.2 K), (2) the superconducting transition temperatureT c , (3) the derivative of the upper critical fielddH c2/dT c , and (4) the low-temperature Seebeck coefficientS(T), which have maximum values at the same pressurep K1≈3 kbar, corresponding to the Kondo-lattice state with the maximum amplitude of the Abrikosov-Suhl resonance in CeCu2Si2 atp=p KL. At higher pressuresp>p KL, a continuous transition from the Kondo lattice to the intermediate valence state is observed, which is accompanied by a complete smearing out of the resonance near the Fermi level. Therefore the Kondo lattices represent a new class of solids, which can be characterized as the link between stable magnetism of metals with a deep 4f level and unstable magnetism associated with fluctuating valence. This novel state can be described by a set of anomalous low-temperature properties related to the giant Abrikosov-Suhl resonance near the Fermi level.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Kittel,Introduction to Solid State Physics, 4th ed. (Wiley, New York), Chapter 15.

  2. 2.

    M. B. Maple, L. E. DeLong, and B. C. Sales, inHandbook on the Physics and Chemistry of Rare Earth's, K. A. Gschneider, ed. (North-Holland, 1978), Vol. 1, p. 798.

  3. 3.

    J. M. Lawrence, P. S. Riseborough, and R. D. Parks,Rep. Prog. Phys. 44, 2 (1981).

    Google Scholar 

  4. 4.

    D. I. Khomskii,Uspekhi Fiz. Nauk 129, 443 (1979).

    Google Scholar 

  5. 5.

    F. N. Mott,Metal-Insulator Transitions (Taylor and Francis, London, 1974).

    Google Scholar 

  6. 6.

    J. S. Schilling, inPhysics of Solids under High Pressure (North-Holland, New York, 1981), p. 345.

    Google Scholar 

  7. 7.

    K. G. Wilson,Rev. Mod. Phys. 47, 773 (1975).

    Google Scholar 

  8. 8.

    A. A. Abrikosov,Uspekhi Fiz. Nauk 97, 403 (1969).

    Google Scholar 

  9. 9.

    P. Schlottmann,Phys. Rev. B,22, 613 (1980).

    Google Scholar 

  10. 10.

    A. A. Abrikosov,Zh. Eksp. Teor. Fiz. 48, 990 (1965).

    Google Scholar 

  11. 11.

    A. A. Abrikosov,Physics 2, 5 (1965).

    Google Scholar 

  12. 12.

    H. Suhl,Phys. Rev. 141, 483 (1966).

    Google Scholar 

  13. 13.

    H. Suhl,Physics 2, 39 (1965).

    Google Scholar 

  14. 14.

    F. G. Aliev, N. B. Brandt, V. V. Moschalkov, N. E. Sluchanko, S. M. Chudinov, and R. I. Yasnitskii,Pis'ma Zh. Eksp. Teor. Fiz. 37, 299 (1983).

    Google Scholar 

  15. 15.

    F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, and S. M. Chudinov,Solid State Commun. 47, 693 (1983).

    Google Scholar 

  16. 16.

    F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, S. M. Chudinov, R. V. Lutsiv, and R. I. Yasnitskii,Fiz. Tverd. Tela 24, 2385 (1982).

    Google Scholar 

  17. 17.

    F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, V. I. Sidorov, and R. V. Lutsiv,Fiz. Tverd. Tela 24, 3151 (1982).

    Google Scholar 

  18. 18.

    F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, R. V. Lutsiv, and S. M. Chudinov,Fiz. Tverd. Tela 25, 2413 (1983).

    Google Scholar 

  19. 19.

    F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, O. V. Petrenko, S. M. Chudinov, and R. I. Yasnitskii,Zh. Eksp. Teor. Fiz. 86, 255 (1984).

    Google Scholar 

  20. 20.

    S. Doniach, inValence Instabilities and Related Narrow Band Phenomena, R. D. Parks, eds. (Plenum Press, New York, 1977), p. 169.

    Google Scholar 

  21. 21.

    J. Flouquet, P. Haen, and C. Vettier,J. Magn. Magn. Mater. 29, 159 (1982).

    Google Scholar 

  22. 22.

    F. Steglich, J. Aarts, C. D. Bredle, W. Lieke, D. Meschede, W. Franz, and H. Schäfer,Phys. Rev. Lett. 43, 1892 (1979).

    Google Scholar 

  23. 23.

    F. G. Aliev, N. B. Brandt, R. V. Lutsiv, V. V. Moshchalkov, and S. M. Chudinov,Pis'ma Zh. Eksp. Teor. Fiz. 35, 435 (1982).

    Google Scholar 

  24. 24.

    U. Rauchschwalbe, W. Lieke, C. D. Bredle, F. Steglich, J. Aarts, K. M. Martini, and A. C. Mota,Phys. Rev. Lett. 49, 1448 (1982).

    Google Scholar 

  25. 25.

    H. R. Ott, H. Rudigier, Z. Fizk, and J. L. Smith,Phys. Rev. Lett. 50, 1595 (1983).

    Google Scholar 

  26. 26.

    N. B. Brandt, V. V. Moshchalkov, A. O. Orlov, L. Skrbek, I. M. Tsidilkovskii, and S. M. Chudinov,Zh. Eksp. Teor. Fiz. 84, 1059 (1983).

    Google Scholar 

  27. 27.

    W. Franz, A. Griessel, F. Steglich, and D. Wohlleben,Z. Physik B 31, 7 (1978).

    Google Scholar 

  28. 28.

    S. Horn, E. Holland-Moritz, M. Loewenhaupt, F. Steglich, H. Scheuer, A. Benoit, and J. Flouquet,Phys. Rev. B 23, 3171 (1981).

    Google Scholar 

  29. 29.

    K. Andres, J. E. Graebner, and H. R. Ott,Phys. Rev. Lett. 35, 1779 (1975).

    Google Scholar 

  30. 30.

    W. Rieger and E. Parth,Monatsh. Chem. 100, 444 (1969).

    Google Scholar 

  31. 31.

    D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton,Proc. R. Soc. Lond. A 266, 161 (1962).

    Google Scholar 

  32. 32.

    J. Lawrence,J. Appl. Phys. 53, 2117 (1982).

    Google Scholar 

  33. 33.

    G. W. Hull, J. H. Wernick, T. H. Geballe, J. W. Waszczak, and J. E. Bernardini,Phys. Rev. B 24, 6715 (1981).

    Google Scholar 

  34. 34.

    G. R. Stewart, Z. Fizk, and J. O. Willis,Phys. Rev. B 28, 172 (1983).

    Google Scholar 

  35. 35.

    M. Ishikawa, H. F. Braun, and J. L. Yorda,Phys. Rev. B 27, 3092 (1983).

    Google Scholar 

  36. 36.

    J. Aarts, F. R. de Boer, and D. E. MacLaughlin,Physica B 121, 162 (1983).

    Google Scholar 

  37. 37.

    A. Yoshimori,Progr. Theor. Phys. 55, 67 (1976).

    Google Scholar 

  38. 38.

    G. Grüner and A. Zawadowski,Rep. Progr. Phys. 37, 1497 (1974).

    Google Scholar 

  39. 39.

    P. Coleman,Phys. Rev. B 2, 5255 (1983).

    Google Scholar 

  40. 40.

    R. M. Martin and J. W. Allen,J. Appl. Phys. 50, 7561 (1979).

    Google Scholar 

  41. 41.

    I. Frankowski and P. Wachter, inProc. Int. Conf. Valence Instabilities (Zurich, 1982) p. 68.

  42. 42.

    C. T. Lacroix,J. Appl. Phys. 53, 2131 (1982).

    Google Scholar 

  43. 43.

    T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley,Phys. Rev. B 19, 4545 (1979).

    Google Scholar 

  44. 44.

    R. Lässer, J. C. Fuggle, M. Beyss, M. Campagna, F. Steglich, and F. Hulliger,Physica B 102, 360 (1980).

    Google Scholar 

  45. 45.

    P. W. Anderson,Phys. Rev. 124, 41 (1961).

    Google Scholar 

  46. 46.

    J. Kondo,Progr. Theor. Phys. (Kyoto)32, 37 (1964).

    Google Scholar 

  47. 47.

    R. M. Martin,Phys. Rev. Lett. 48, 362 (1982).

    Google Scholar 

  48. 48.

    V. Zlatic,J. Phys. F 11, 2147 (1981).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aliev, F.G., Brandt, N.B., Moshchalkov, V.V. et al. Electric and magnetic properties of the Kondo-lattice compound CeCu2Si2 . J Low Temp Phys 57, 61–93 (1984). https://doi.org/10.1007/BF00681517

Download citation

Keywords

  • Fermi Level
  • Seebeck Coefficient
  • Singlet Ground State
  • Magnetic Phase Diagram
  • Kondo Lattice