Advertisement

Journal of Low Temperature Physics

, Volume 56, Issue 1–2, pp 1–11 | Cite as

Two-vortex interactions and elastic constants in type II superconductors

  • H. M. Miesenböck
Article

Abstract

The elastic energy of a distorted flux-line lattice is calculated on the basis of a two-vortex interaction. Such a description is completely sufficient throughout the whole induction range between the upper and lower critical fieldsHc1 andHc2. Therefore it is possible to calculate all elastic moduli from a common potential consisting of two parts, one of a combined “electromagnetic London type,” the other based on the core overlap of the flux lines. The results are highly nonlocal and are in agreement with previous calculations of Brandt, but are modified nearHc1 for small κ (the ratio between the penetration depth and the coherence length).

Keywords

Coherence Magnetic Material Penetration Depth Elastic Constant Elastic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Labusch,Phys. Stat. Sol. 19, 715 (1967);32, 439 (1969).Google Scholar
  2. 2.
    E. H. Brandt,J. Low Temp. Phys. 26, 709 (1977).Google Scholar
  3. 3.
    E. H. Brandt,J. Low Temp. Phys. 26, 735 (1977).Google Scholar
  4. 4.
    P. Wagenleithner,J. Low Temp. Phys. 48, 25 (1982).Google Scholar
  5. 5.
    J. R. Clem,J. Low Temp. Phys. 18, 427 (1975).Google Scholar
  6. 6.
    B. B. Goodman and J. Matricon,J. Phys. (Paris)27(7/8), C3 (1966).Google Scholar
  7. 7.
    L. Kramer,Phys. Rev. B 3, 3821 (1971).Google Scholar
  8. 8.
    I. S. Gradsteyn and I. M. Ryzhik,Table of Integrals, Series and Products, p. 498, 3.961/1.Google Scholar
  9. 9.
    W. Macke,Mechanik der Teilchen, Systeme und Kontinua (Akademische Verlagsgesellschaft, 1967), Chapter 7.Google Scholar
  10. 10.
    E. V. Thuneberg, J. Kurkijardvi, D. Rainer,Phys. Rev. Lett. 48, 1853 (1982).Google Scholar
  11. 11.
    E. H. Brandt,J. Low Temp. Phys. 28, 263, 291 (1977).Google Scholar
  12. 12.
    E. H. Brandt,J. Low Temp. Phys. 53, 41 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • H. M. Miesenböck
    • 1
  1. 1.Institut für Theoretische PhysikJohannes Kepler UniversitätLinzAustria

Personalised recommendations