Journal of Low Temperature Physics

, Volume 56, Issue 3–4, pp 277–313 | Cite as

Electromagnetic field spikes in thin metal slabs

  • M. A. Lur'e
  • V. G. Peschansky
  • K. Yiasemides


The effect of specimen surface conditions on the propagation of electromagnetic waves in metals under anomalous skin effect conditions is analyzed. If the specimen is placed in a magnetic field parallel to the surface, the electromagnetic field penetrates into the metal in the form of narrow spikes whose basic parameters are highly sensitive to the quality of the conductor surface. In a thin slab the amplitude of the transmitted electromagnetic wave depends on the state of both of its faces. The intensity and width of the field spikes are essentially different from those in a half-space. The reason is that the formation of a high-frequency field near the plate surface opposite the skin layer is determined by electrons moving along that surface at shallow angles, just as the high-frequency screening current in the skin layer is determined by electrons slipping along the surface at which the field is incident. The shape of the spikes is analyzed in detail as a function of their location within the specimen. The transparency and impedance of the plate are calculated for the size-effect conditions when the spike “emerges” on the conductor surface. Experimental investigation of the size effect can be an effective method of studying the interaction of conduction electrons with the metal surface.


Electromagnetic Field Electromagnetic Wave Plate Surface Skin Layer Conductor Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov,Electron Theory of Metals (Nauka, Moscow, 1971), Chapter 4.Google Scholar
  2. 2.
    M. Ya. Azbel,Zh. Eksp. Teor. Fiz. 39, 400 (1960).Google Scholar
  3. 3.
    V. F. Gantmacher,Zh. Eksp. Teor. Fiz. 43, 345 (1960).Google Scholar
  4. 4.
    M. Ya. Azbel and E. A. Kaner,Zh. Eksp. Teor. Fiz. 32, 896 (1957).Google Scholar
  5. 5.
    V. F. Gantmacher,Prog. Low Temp. Phys. 5, 181 (1967).Google Scholar
  6. 6.
    M. S. Khaikin,Usp. Fiz. Nauk 96, 409 (1968).Google Scholar
  7. 7.
    R. G. Chambers,Proc. R. Soc. 86, 305 (1965).Google Scholar
  8. 8.
    B. E. Meyerovich,Zh. Eksp. Teor. Fiz. 58, 324 (1970).Google Scholar
  9. 9.
    L. A. Falkovskii,Zh. Eksp. Teor. Fiz. 80, 775 (1981).Google Scholar
  10. 10.
    V. G. Peschansky and K. Yiasemides,Fiz. Niz. Temp. 6, 541 (1980).Google Scholar
  11. 11.
    V. G. Peschansky, M. A. Lur'e, and K. Yiasemides,Phys. Lett. 84A, 193 (1981).Google Scholar
  12. 12.
    V. G. Peschansky, V. Cardenas, M. A. Lur'e, and K. Yiasemides,Zh. Eksp. Teor. Fiz. 80, 1645 (1981).Google Scholar
  13. 13.
    L. A. Falkovskii,Zh. Eksp. Teor. Fiz. 58, 1830 (1970).Google Scholar
  14. 14.
    V. J. Okulov and V. V. Ustinov,Zh. Eksp. Teor. Fiz. 67, 1176 (1974).Google Scholar
  15. 15.
    L. E. Hartmann and I. M. Luttinger,Phys. Rev. 151, 430 (1966).Google Scholar
  16. 16.
    V. S. Tsoi and V. F. Gantmacher,Zh. Eksp. Teor. Fiz. 56, 1232 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • M. A. Lur'e
    • 1
  • V. G. Peschansky
    • 1
  • K. Yiasemides
    • 1
  1. 1.Institute for Low Temperature Physics and EngineeringAcademy of Sciences of the Ukrainian SSSR, and A. M. Gorky UniversityKharkovUSSR

Personalised recommendations