Advertisement

Journal of Low Temperature Physics

, Volume 58, Issue 3–4, pp 379–388 | Cite as

Quasiparticle recombination time of superconducting tin films in a parallel magnetic field

  • K. Holdik
  • M. Welte
  • W. Eisenmenger
Article

Abstract

The influence of a parallel magnetic field on the quasiparticle recombination time of superconducting tin tunneling junctions has been determined experimentally. The results are compared with the predictions of a theoretical model that takes into account the modification of the quasiparticle density of states by the applied magnetic field.

Keywords

Magnetic Field Recombination Theoretical Model Magnetic Material Applied Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Ginsberg,Phys. Rev. Lett. 8, 204 (1962).Google Scholar
  2. 2.
    J. R. Schrieffer and D. M. Ginsberg,Phys. Rev. Lett. 8, 207 (1962).Google Scholar
  3. 3.
    L. Tewordt,Phys. Rev. 128, 12 (1962).Google Scholar
  4. 4.
    A. Rothwarf and M. Cohen,Phys. Rev. Lett. 130, 1401 (1963).Google Scholar
  5. 5.
    B. I. Miller and A. H. Dayem,Phys. Rev. Lett. 18, 1000 (1967).Google Scholar
  6. 6.
    A. Rothwarf and B. N. Taylor,Phys. Rev. Lett. 19, 27 (1967).Google Scholar
  7. 7.
    W. Eisenmenger, inFachberichte der Physikertagung Berlin 1967, Deutsche Physikalische Gesellschaft, ed. (B. G. Teubner, Stuttgart, 1967), p. 88.Google Scholar
  8. 8.
    J. L. Levine and S. Y. Hsieh,Phys. Rev. Lett. 20, 994 (1968).Google Scholar
  9. 9.
    K. E. Gray, A. R. Long, and C. J. Adkins,Phil. Mag. 20, 273 (1969).Google Scholar
  10. 10.
    K. E. Gray, Phil. Mag20, 267 (1969).Google Scholar
  11. 11.
    W. Eisenmenger, inTunneling Phenomena in Solids, E. Burstein and S. Lundquist, eds. (Plenum Press, New York, 1969), p. 371.Google Scholar
  12. 12.
    A. Rothwarf,Phys. Rev. Lett. 23, 468 (1969).Google Scholar
  13. 13.
    H. J. Trumpp, K. Lassmann, and W. Eisenmenger,Phys. Lett. 41A, 431 (1972).Google Scholar
  14. 14.
    W. Eisenmenger, K. Lassmann, H. J. Trumpp, and R. Krauss,Appl. Phys. 11, 307 (1977).Google Scholar
  15. 15.
    W. Eisenmenger, K. Lassmann, H. J. Trumpp, and R. Krauss,Appl. Phys. 12, 163 (1977).Google Scholar
  16. 16.
    P. W. Epperlein, K. Lassmann, and W. Eisenmenger,Z. Phys. B 31, 377 (1978).Google Scholar
  17. 17.
    G. Lucas and M. J. Stephen,Phys. Rev. 154, 349 (1967).Google Scholar
  18. 18.
    A. Schmid and G. Schön,J. Low Temp. Phys. 20, 207 (1975).Google Scholar
  19. 19.
    S. Skalski, O. Betbeder-Matibet, and P. R. Weiss,Phys. Rev. 136, A1500 (1964).Google Scholar
  20. 20.
    P. Fulde,Phys. Rev. 137, A783 (1965).Google Scholar
  21. 21.
    J. L. Levine,Phys. Rev. 155, 373 (1967).Google Scholar
  22. 22.
    S. Strässler and P. Wyder,Phys. Rev. 158, 319 (1967).Google Scholar
  23. 23.
    J. Millstein and M. Tinkham,Phys. Rev. 158, 325 (1967).Google Scholar
  24. 24.
    W. J. Stocpol,Phys. Rev. B 14, 1045 (1967).Google Scholar
  25. 25.
    W. Eisenmenger, inPhysical Acoustics, Vol. XII, P. W. Mason and R. N. Thurston, eds. (Academic Press, New York, 1976), p. 79.Google Scholar
  26. 26.
    D. Marx and W. Eisenmenger,Z. Phys. B 48, 277 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • K. Holdik
    • 1
  • M. Welte
    • 1
  • W. Eisenmenger
    • 1
  1. 1.Physikalisches Institut der Universität StuttgartStuttgartWest Germany

Personalised recommendations