Skip to main content
Log in

Some remarks about the flux periodicity in SQUIDS

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A topological approach is used to show that the flux periodicity of any practical single-junction rf SQUID or double-junction dc SQUID device is one flux quantum (Φ0). The flux periodicity is independent of the number of superconducting loops and circuit inductances. The topological point of view explains how multihole configurations can be derived from a toroidal one. Weak links are considered as topological switches that allow magnetic flux lines to pass from one homotopic class of loops to another. In addition to rf SQUIDs in the hysteretic or nonhysteretic regime, we also consider resistive and dc SQUIDs. Some special cases are also introduced where the flux periodicity is not Φ0, due to special nonlinear behavior of the weak link, due to coupling to a resonant circuit, or because of a great number of weak links in the superconducting circuit. The flux periodicity of a SQUID is a property of the weak link itself, and not of the inductances connected to it. Only the number of weak links and their mutual connection in series or parallel can change the fundamental flux periodicity of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Zimmerman,J. Appl. Phys. 42, 4483 (1971).

    Google Scholar 

  2. R. P. Giffard, R. A. Webb, and J. C. Wheatley,J. Low Temp. Phys. 6, 533 (1972).

    Google Scholar 

  3. O. V. Lounasmaa,Experimental Principles and Methods Below 1 K, (Academic Press, New York, 1974), Chapter 7.

    Google Scholar 

  4. J. Vrba, A. A. Fife, V. Macura, M. B. Burbank, and R. Lommes,Can. J. Phys. 54, 1937 (1976).

    Google Scholar 

  5. N. F. Masharov,Zh. Tekhn. Fiz. 48, 1535 (1978).

    Google Scholar 

  6. J. G. Park,J. Phys. F 3, 1144 (1973).

    Google Scholar 

  7. Fizika Tverdovo Tela Specpractikum (Moscow University, Moscow, 1983), p. 268.

  8. A. Barone and G. Paterno,Physics and Applications of the Josephson Effect (Wiley, New York, 1982), Chapters 12 and 13.

    Google Scholar 

  9. G. Brunk and H. Lübbig,J. Low Temp. Phys. 47, 13 (1982).

    Google Scholar 

  10. B. D. Josephson,Adv. Phys. 14, 419 (1965).

    Google Scholar 

  11. K. K. Likharev and B. T. Ulrich,Sistemy s Džozefsonovskimi Kontaktami (Moscow University, Moscow, 1978).

    Google Scholar 

  12. K. K. Likharev,Rev. Mod. Phys. 51, 101 (1979).

    Google Scholar 

  13. D. E. McCumber,J. Appl. Phys. 39, 3113 (1968).

    Google Scholar 

  14. W. C. Stewart,J. Appl. Phys. 45, 452 (1974).

    Google Scholar 

  15. Odehnal and V. Petříček,J. Low Temp. Phys. 39, 505 (1980).

    Google Scholar 

  16. M. B. Ketchen,IEEE Trans. Magn. MAG-17, 387 (1980).

    Google Scholar 

  17. A. H. Silver and J. E. Zimmerman,Phys. Rev. 157, 317 (1967).

    Google Scholar 

  18. G. J. Ehnholm,J. Low Temp. Phys. 29, 1 (1977).

    Google Scholar 

  19. A. A. J. Matsinger, R. de Bruyn Ouboter, and H. van Beelen,Physica 94B, 91 (1978).

    Google Scholar 

  20. P. K. Hansma,J. Appl. Phys. 44, 4191 (1973).

    Google Scholar 

  21. M. Odehnal, V. Petřŕček, and R. Tichý,J. Low Temp. Phys. 24, 187 (1976).

    Google Scholar 

  22. O. H. Soerensen,J. Appl. Phys. 47, 5030 (1976).

    Google Scholar 

  23. V. I. Šnyrkov, V. A. Khlus, and G. M. Tsoi,J. Low Temp. Phys. 39, 477 (1980).

    Google Scholar 

  24. V. V. Danilov and K. K. Likharev,Zh. Tekhn. Fiz. 45, 1110 (1975) [Sov. Phys.-Tech. Phys. 20, 697 (1976)].

    Google Scholar 

  25. S. N. Erné, H. D. Hahlbohm, and H. Lübbig,J. Appl. Phys. 47, 5440 (1976).

    Google Scholar 

  26. S. N. Erné and H. Luther,J. Phys. (Paris)39, C6–1208 (1978).

    Google Scholar 

  27. R. Rifkin, D. A. Vincent, B. S. Deaver, Jr., and P. K. Hansma,J. Appl. Phys. 47, 2645 (1976).

    Google Scholar 

  28. J. T. Harding and J. E. Zimmerman,J. Appl. Phys. 41, 1581 (1970).

    Google Scholar 

  29. J. G. Park,J. Phys. F 4, 2239 (1974).

    Google Scholar 

  30. S. Ramo, J. R. Whinnery, and T. van Duzer,Fields and Waves in Communication Electronics (Wiley, New York, 1965), Chapters 4 and 5.

    Google Scholar 

  31. A. Th. A. M. de Waele and R. de Bruyn Ouboter,Physica 42, 626 (1969).

    Google Scholar 

  32. E. O. Schulz-du Bois and R. Wolf,Appl. Phys. 16, 317 (1978).

    Google Scholar 

  33. W. Richter and F. Dettmann,Phys. Stat. Sol. (b) 116, K95 (1983).

  34. A. Th. A. M. de Waele and R. de Bruyn Ouboter,Physica 41, 225 (1969).

    Google Scholar 

  35. Won-Tien Tsang and T. van Duzer,J. Appl. Phys. 46, 4573 (1975).

    Google Scholar 

  36. Won-Tien Tsang and T. van Duzer,J. Appl. Phys. 47, 2656 (1976).

    Google Scholar 

  37. G. F. Zharkov and A. D. Zaikin,Cryogenics 329 (1980).

  38. J. P. Hurrell and A. H. Silver, inFuture Trends in Superconductive Electronics B. S. Deaver, Jr.,et al., eds. (AIP Conference Proceedings No. 44, New York, 1978).

  39. A. H. Silver,IEEE Trans. Magn. MAG-15, 268 (1979).

    Google Scholar 

  40. A. H. Silver, D. C. Pridmore-Brown, R. D. Sandell, and J. P. Hurrell,IEEE Trans. Magn. MAG-17, 412 (1981).

    Google Scholar 

  41. L. S. Kuzmin, K. K. Likharev, and V. V. Migulin,IEEE Trans. Magn. MAG-17, 822 (1981).

    Google Scholar 

  42. D. B. Sullivan, R. L. Petersen, V. E. Kose, and J. E. Zimmerman,J. Appl. Phys. 41, 4865 (1970).

    Google Scholar 

  43. R. D. Sandell, J. P. Wikswo, Jr., J. M. Pickler, and B. S. Deaver, Jr.,J. Appl. Phys. 44, 3312 (1973).

    Google Scholar 

  44. H. J. T. Smith and J. A. Blackburn,Phys. Rev. B 12, 940 (1975).

    Google Scholar 

  45. P. Fernandez, C. Salvo, R. Parodi, A. Siri, and R. Vaccarone,IEEE Trans. Magn. MAG-15, 482 (1979).

    Google Scholar 

  46. G. E. Peabody and R. Meservey,Phys. Rev. B 6, 2579 (1972).

    Google Scholar 

  47. B. S. Deaver and G. B. Donaldson,Phys. Lett. 89A, 178 (1982).

    Google Scholar 

  48. Ch. C. Gerry and V. A. Singh,Phys. Lett. 92A, 11 (1982).

    Google Scholar 

  49. Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959).

    Google Scholar 

  50. R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau,Phys. Rev. Lett. 12, 159, 274 (1964).

    Google Scholar 

  51. M. Peshkin,Phys. Rev. A 80, 360 (1981).

    Google Scholar 

  52. M. Peshkin,Phys. Rep. 80, 377 (1981).

    Google Scholar 

  53. J. E. Mercereau, inSuperconductivity, Vol. 1, R. D. Parks, ed., (Marcel Dekker, New York 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odehnal, M., Penttinen, A. Some remarks about the flux periodicity in SQUIDS. J Low Temp Phys 57, 331–347 (1984). https://doi.org/10.1007/BF00681197

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681197

Keywords

Navigation