Journal of Low Temperature Physics

, Volume 57, Issue 3–4, pp 291–305 | Cite as

On the effective spectral densities for a superconductor with paramagnons

  • H. G. Zarate
  • J. P. Carbotte


Solutions of generalized Eliashberg equations containing an explicit paramagnon contribution are generated and used to obtain tunneling characteristics, which are then inverted in order to recover an effective spectral density. We consider several shapes for the paramagnon spectral density and vary the characteristic paramagnon energy. We invert the information on the gap using both the generalized and conventional Eliashberg equations and compare the effective spectral functions obtained by these methods with each other and with the actual kernels for the electron paramagnon and electron phonon spectral density. Scaling laws relating approximately the inverted and actual kernels are established and limitations on these laws described.


Magnetic Material Spectral Density Spectral Function Electron Phonon Eliashberg Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Daams, B. Mitrović, and J. P. Carbotte,Phys. Rev. Lett. 46, 65 (1981).Google Scholar
  2. 2.
    B. Mitrović and J. P. Carbotte,Solid State Commun. 41, 695 (1982).Google Scholar
  3. 3.
    H. Reitschel and H. Winter,Phys. Rev. Lett. 43, 1256 (1979);Phys. Rev. B 22, 4284 (1980).Google Scholar
  4. 4.
    H. Rietschel,Phys. Rev. B 24, 155 (1981).Google Scholar
  5. 5.
    R. Baquero, J. M. Daams, and J. P. Carbotte,J. Low Temp. Phys. 42, 585 (1981).Google Scholar
  6. 6.
    Z. Altounian and J. P. Strom-Olsen,Phys. Rev. B 27, 4149 (1983).Google Scholar
  7. 7.
    F. J. Pinski, P. B. Allen, and W. H. Butler,J. Phys. (Paris)39, C6–472 (1978).Google Scholar
  8. 8.
    F. J. Pinski and W. H. Butler,Phys. Rev. B 19, 6010 (1979).Google Scholar
  9. 9.
    P. F. de Chatel and E. P. Wohlfarth,Comm. Solid State Phys. 5, 133 (1973).Google Scholar
  10. 10.
    F. J. Plinski, P. V. Allen, and W. H. Butler,Phys. Rev. B 23, 5080 (1981).Google Scholar
  11. 11.
    L. Dumoulin, P. Nedellec, and P. M. Chaikin,Phys. Rev. Lett. 47, 208 (1981).Google Scholar
  12. 12.
    B. Mitrović,Solid State Commun. 47, 51 (1983).Google Scholar
  13. 13.
    G. R. Stewart, J. L. Smith, and B. L. Brandt,Phys. Rev. B 26, 3783 (1982).Google Scholar
  14. 14.
    G. R. Stewart, A. L. Giorgi, B. L. Brandt, S. Foner, and A. J. Arko,Phys. Rev. B 28, 1524 (1983).Google Scholar
  15. 15.
    A. A. Galkin, A. I. D'yachenko, and V. M. Svistunov,Sov. Phys. JETP 39, 1115 (1979).Google Scholar
  16. 16.
    C. R. Leavens and A. H. MacDonald,Phys. Rev. B 27, 2812 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • H. G. Zarate
    • 1
  • J. P. Carbotte
    • 1
  1. 1.Physics DepartmentMcMaster UniversityHamiltonCanada

Personalised recommendations