Advertisement

Journal of Low Temperature Physics

, Volume 57, Issue 3–4, pp 207–226 | Cite as

Nonlinear effects in the damping of third-sound pulses

  • D. A. Browne
Article

Abstract

We show that nonlinearities in the equations of motion for a third-sound pulse in a thick superfluid film lead to the production of short-wavelength solitons. The soliton damping arises from viscous stresses in the film, rather than from coupling to thermal currents in the vapor and the substrate, as in the hydrodynamic regime. These solitons are more strongly damped than a long-wavelength third-sound wave and lead to a larger attenuation of the pulse. We show that this mechanism can account for the discrepancy between attenuation calculated theoretically for the long-wavelength limit and the experimentally observed attenuation of low-amplitude third-sound pulses.

Keywords

Attenuation Soliton Magnetic Material Nonlinear Effect Viscous Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Atkins and I. Rudnick, inProgress in Low Temperature Physics, Vol. 6, C. J. Gorter, ed. (North-Holland, Amsterdam, 1970), pp. 37–76.Google Scholar
  2. 2.
    K. R. Atkins,Phys. Rev. 113, 962 (1959).Google Scholar
  3. 3.
    C. W. F. Everitt, K. R. Atkins, and A. Denenstein,Phys. Rev. 136, A1494 (1964).Google Scholar
  4. 4.
    H. Scholtz, E. O. McLean, and I. Rudnick,Phys. Rev. Lett. 32, 1471 (1974).Google Scholar
  5. 5.
    D. Bergman,Phys. Rev. 188, 370 (1969).Google Scholar
  6. 6.
    D. Bergman,Phys. Rev. A 3, 2058 (1971).Google Scholar
  7. 7.
    T. G. Wang and I. Rudnick,J. Low Temp. Phys. 9, 425 (1972).Google Scholar
  8. 8.
    K. L. Telschow, R. L. Galkiewicz, and R. B. Hallock,Phys. Rev. B 14, 4883 (1976).Google Scholar
  9. 9.
    B. A. Huberman,Phys. Rev. Lett. 41, 1389 (1978).Google Scholar
  10. 10.
    A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin,Proc. IEEE 61, 1443 (1973).Google Scholar
  11. 11.
    S. Nakajima, S. Kurihara, and K. Tohdoh,J. Low Temp. Phys. 39, 465 (1980).Google Scholar
  12. 12.
    S. Nakajima, K. Tohdoh, and S. Kurihara,J. Low Temp. Phys. 41, 521 (1980).Google Scholar
  13. 13.
    K. Kono, S. Kobayashi, and W. Sasaki,J. Phys. Soc. Japan 50, 721 (1981).Google Scholar
  14. 14.
    B. A. Huberman, R. J. Myerson, and S. Doniach,Phys. Rev. Lett. 40, 780 (1978).Google Scholar
  15. 15.
    V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia,Phys. Rev. Lett. 40, 783 (1978);Phys. Rev. B 21, 1806 (1980).Google Scholar
  16. 16.
    S. Teitel,J. Low Temp. Phys. 46, 77 (1982).Google Scholar
  17. 17.
    D. A. Browne and S. Doniach,Phys. Rev. B 25, 136 (1982).Google Scholar
  18. 18.
    J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6, 1181 (1973); J. M. Kosterlitz,J. Phys. C 7, 1046 (1973).Google Scholar
  19. 19.
    T. A. Karchava and D. G. Sanikidze,Zh. Eksp. Teor. Fiz. 62, 369 (1972) [Sov. Phys. JETP 35, 198 (1972)].Google Scholar
  20. 20.
    S. J. Putterman,Superfluid Hydrodynamics (North-Holland, New York, 1974), pp. 212–234.Google Scholar
  21. 21.
    C. S. Garner, J. M. Greene, M. D. Krustal, and R. M. Miura,Phys. Rev. Lett. 19, 1095 (1967).Google Scholar
  22. 22.
    V. I. Karpman and E. M. Maslov,Phys. Lett. 60 A, 307 (1977);Zh. Eksp. Teor. Fiz. 73, 537 (1977) [Sov. Phys. JETP 46, 281 (1978)].Google Scholar
  23. 23.
    V. I. Karpman and E. M. Maslov,Zh. Eksp. Teor. Fiz. 75, 504 (1978) [Sov. Phys. JETP 48, 252 (1979)].Google Scholar
  24. 24.
    I. Rudnick, R. S. Kagiwada, J. C. Fraser, and E. Guyon,Phys. Rev. Lett. 20, 430 (1968).Google Scholar
  25. 25.
    J. E. Rutledge, W. L. McMillan, J. M. Mochel, and T. E. Washburn,Phys. Rev. B 18, 2155 (1980).Google Scholar
  26. 27.
    G. B. Whitham,Linear and Non-linear Waves (Wiley-Interscience, New York, 1974).Google Scholar
  27. 28.
    S. Kurihara,J. Phys. Soc. Japan 50, 3262 (1981);J. Phys. Soc. Japan 50, 3801 (1981);Physica 107B, 413 (1981).Google Scholar
  28. 29.
    V. I. Karpman,Phys. Lett. 66A, 13 (1978).Google Scholar
  29. 30.
    J. C. Fernandez, G. Reinisch, A. Bondeson, and J. Weiland,Phys. Lett. 66A, 13 (1978).Google Scholar
  30. 31.
    K. Ko and H. H. Kuehl,Phys. Fluids 23, 834 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • D. A. Browne
    • 1
  1. 1.Department of Applied PhysicsStanford UniversityStanford

Personalised recommendations