Journal of Low Temperature Physics

, Volume 58, Issue 5–6, pp 555–590 | Cite as

Persistent currents in superfluid3He

  • J. P. Pekola
  • J. T. Simola
Article

Abstract

Measurements are reported of persistent currents in superfluid3He-B and3He-A. An ac gyroscope filled with 20 µm powder and mounted into a rotating nuclear refrigerator was employed. In3He-B, undiminished circulation was observed for 48 h; this implies an effective viscosity at least 12 orders of magnitude lower than in the normal fluid at the same temperature. AtP<15 bar, the observed critical velocity is independent of temperature but it is a weak function of pressure;v c varies between 4 and 6 mm/sec. The response to rotation is hysteretic, with elastic potential flow at slow rotation and irreversible vortex flow at higher angular velocities. The persistent angular momentumL is reversible when thermally cycled in the B phase, and proportional to the superfluid fraction ρ s /ρ. Above 15 bar the B phase splits into separate regions with different critical velocities. The measuredv c in the phase existing only at high pressures is dependent on magnetic field; for example, at 23.0 bar,v c (H=0) =5 mm/sec, butv c (H=40 G) =15 mm/sec. In the low pressure phase,v c is insensitive to a change in the magnetic field. The phase transition is of first order; the latent heatQ G (≈1 µJ/mole) depends on the maximum angular velocity at which the cryostat was rotated. The transition is proposed to occur in the core structure of pinned quantized vortices sustaining persistent currents. In3He-A, currents could not be found to persist on an observable level. Direct measurements ofL atH=0 and atH=40 G, and repeated thermal cycling, showed that either the current decays rapidly orv c <0.5 mm/sec.

Keywords

Vortex Angular Velocity Critical Velocity Core Structure Potential Flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Dahm, D. S. Betts, D. F. Brewer, J. Hutchins, J. Saunders, and W. S. Truscott,Phys. Rev. Lett. 45, 1411 (1980).Google Scholar
  2. 2.
    J. M. Parpia and J. D. Reppy,Phys. Rev. Lett. 43, 1332 (1979).Google Scholar
  3. 3.
    J. P. Eisenstein and R. E. Packard,Phys. Rev. Lett. 49, 564 (1982).Google Scholar
  4. 4.
    M. T. Manninen and J. P. Pekola,Phys. Rev. Lett. 48, 812, 1369 (E); M. T. Manninen and J. P. Pekola,J. Low Temp. Phys. 52, 497 (1983).Google Scholar
  5. 5.
    M. T. Manninen, J. P. Pekola, R. G. Sharma, and M. S. Tagirov,Phys. Rev. B 26, 5233 (1982).Google Scholar
  6. 6.
    M. A. Paalanen and D. D. Osheroff,Phys. Rev. Lett. 45, 362 (1980).Google Scholar
  7. 7.
    P. L. Gammel, H. E. Hall, and J. D. Reppy,Phys. Rev. Lett. 52, 121 (1984).Google Scholar
  8. 8.
    J. P. Pekola, J. T. Simola, K. K. Nummila, O. V. Lounasmaa, and R. E. Packard,Phys. Rev. Lett. 53, 70 (1984).Google Scholar
  9. 9.
    J. P. Pekola, J. T. Simola, P. J. Hakonen, M. Krusius, O. V. Lounasmaa, K. K. Nummila, G. Mamniashvili, R. E. Packard, and G. E. Volovik,Phys. Rev. Lett. 53, 584 (1984).Google Scholar
  10. 10.
    J. P. Pekola, J. T. Simola, K. K. Nummila, O. V. Lounasmaa, and R. E. Packard, inProc. LT-17. U. Eckern et al., eds. (North-Holland, New York, 1984), p. 35.Google Scholar
  11. 11.
    A. L. Fetter, inThe Physics of Liquid and Solid Helium, Part I, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976), p. 207.Google Scholar
  12. 12.
    P. Bhattacharya, T.-L. Ho, and N. D. Mermin,Phys. Rev. Lett. 39, 1290 (1977).Google Scholar
  13. 13.
    A. L. Fetter,Phys. Rev. Lett. 40, 1656 (1978).Google Scholar
  14. 14.
    P. J. Hakonen, O. T. Ikkala, S. T. Islander, T. K. Markkula, P. M. Roubeau, K. M. Saloheimo, D. I. Garibashvili, and J. S. Tsakadze,Cryogenics 23, 243 (1983).Google Scholar
  15. 15.
    P. J. Hakonen, M. Krusius, G. Mamniashvili, and J. T. Simola, inProc. LT-17. U. Eckern et al., eds. (North-Holland, New York, 1984), p. 49.Google Scholar
  16. 16.
    I. Rudnick, H. Kojima, W. Veith, and R. S. Kagiwada,Phys. Rev. Lett. 23, 1220 (1969).Google Scholar
  17. 17.
    H. Kojima, Ph.D. Thesis, University of California at Los Angeles (1972).Google Scholar
  18. 18.
    J. S. Marcus, Ph.D. Thesis, University of California at Los Angeles (1982).Google Scholar
  19. 19.
    J. D. Reppy,Phys. Rev. Lett. 14, 733 (1965).Google Scholar
  20. 20.
    J. R. Clow and J. D. Reppy,Phys. Rev. Lett. 19, 291 (1967).Google Scholar
  21. 21.
    J. S. Langer and J. D. Reppy, inProgress in Low Temperature Physics, Vol. VI, C. J. Gorter, ed. (North-Holland, Amsterdam, 1970), p. 34.Google Scholar
  22. 22.
    J. Heiserman, Ph.D. Thesis, University of California at Los Angeles (1975).Google Scholar
  23. 23.
    K. Magnus,Kreisel (Springer, 1971), p. 49.Google Scholar
  24. 24.
    J. P. Pekola, J. T. Simola, and K. K. Nummila,Proc. ICEC10 (1984), to be published.Google Scholar
  25. 25.
    M. T. Huiku, T. A. Jyrkkiö, M. T. Loponen, and O. V. Lounasmaa, inQuantum Fluids and Solids—1983, E. D. Adams and G. G. Ihas, eds. (American Institute of Physics, New York, 1983), p. 441.Google Scholar
  26. 26.
    C. N. Archie, T. A. Alvesalo, J. D. Reppy, and R. C. Richardson,Phys. Rev. Lett. 43, 139 (1979).Google Scholar
  27. 27.
    H. Lamb,Hydrodynamics (Dover, 1945), pp. 85, 124.Google Scholar
  28. 28.
    A. L. Fetter,Phys. Rev. B 29, 5182 (1984).Google Scholar
  29. 29.
    S. V. Iordanskii,Zh. Eksp. Teor. Fiz. 48, 708 (1965);Sov. Phys. JETP 21, 467 (1965).Google Scholar
  30. 30.
    J. S. Langer and M. E. Fisher,Phys. Rev. Lett. 19, 560 (1967).Google Scholar
  31. 31.
    S. J. Puttermann,Superfluid Hydrodynamics (North-Holland, 1974), pp. 255–262.Google Scholar
  32. 32.
    G. Kukich, R. P. Henkel, and J. D. Reppy,Phys. Rev. Lett. 21, 197 (1968).Google Scholar
  33. 33.
    O. T. Ikkala, G. E. Volovik, P. J. Hakonen, Yu. M. Bunkov, S. T. Islander, and G. A. Kharadze,Pis'ma Zh. Eksp. Teor. Fiz. 35, 338 (1982);JETP Lett. 35, 416 (1982).Google Scholar
  34. 34.
    P. J. Hakonen, O. T. Ikkala, S. T. Islander, O. V. Lounasmaa, and G. E. Volovik,J. Low Temp. Phys. 53, 425 (1983).Google Scholar
  35. 35.
    Ren-Zhi Ling, D. S. Betts, and D. F. Brewer,Phys. Rev. Lett. 53, 930 (1984).Google Scholar
  36. 36.
    T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp. Phys. 45, 373 (1981).Google Scholar
  37. 37.
    D. D. Awschalom and K. W. Schwarz,Phys. Rev. Lett. 52, 49 (1984).Google Scholar
  38. 38.
    M. M. Salomaa and G. E. Volovik,Phys. Rev. Lett. 51, 2040 (1983).Google Scholar
  39. 39.
    M. M. Salomaa and G. E. Volovik,Phys. Rev. B, submitted.Google Scholar
  40. 40.
    R. Bruinsma and K. Maki,J. Low Temp. Phys. 37, 607 (1979).Google Scholar
  41. 41.
    A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • J. P. Pekola
    • 1
  • J. T. Simola
    • 1
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland

Personalised recommendations