Glass and Ceramics

, Volume 52, Issue 9, pp 249–252 | Cite as

Model of precision surface treatment of quartz glass with a bound abrasive

  • Yu. N. Lokhov
  • I. V. Moskalev
  • A. S. Cherkasov
At Enterprises and Institutes


A model of precision surface treatment of silica glass with a grinding tool on a pitch binder was developed. The relationships between the properties of the materials (fused silica, diamond abrasive grains) and the controlled parameters of the process were obtained. Conditions for the efficient removal of the subsurface damaged layer from the specimen under brittle fracture conditions are presented.


Polymer Quartz Brittle Efficient Removal Control Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Brown, “Some speculations on the mechanism of abrasive grinding and polishing,”Precision Eng.,9(3), 129 (1987).Google Scholar
  2. 2.
    G. M. Sanger, “Perspective on precision, machining, polishing, and optical requirements,”SPIE,306, 90 (1981).Google Scholar
  3. 3.
    A. L. Ardamatskii,Diamond Treatment of Optical Parts [in Russian], Mashinostroenie, Leningrad (1978).Google Scholar
  4. 4.
    G. S. Khodakov and N. L. Kydryavtseva,Physicochemical Processes of Optical Glass Polishing [in Russian], Mashinostroenie, Moscow (1985).Google Scholar
  5. 5.
    S. A. Klevtsur, M. R. Spasskii, and Yu. N. Lokhov, “Thermal ovalizing of diamond powders,”Izv. Akad. Nauk SSSR Neorg. Mat.,17(6), 985 (1981).Google Scholar
  6. 6.
    M. R. Spasskii, Yu. V. Ashkerov, and Yu. N. Lokhov, “Wear and maximum roughness of a metal surface polished with a bound abrasive,”Poverkhnost', No. 2, 135–142 (1987).Google Scholar
  7. 7.
    V. A. Bernshtein,Mechanohydrolytic Processes and Strength of Solids [in Russian], Nauka, Leningrad (1987).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshits,The Theory of Elasticity, Nauka, Moscow (1987).Google Scholar
  9. 9.
    G. M. Hamilton and L. E. Goodman, “Stress field created by a circular sliding contact,”J. Appl. Mech., No. 33, 371–366 (1966).Google Scholar
  10. 10.
    I. V. Moskalev, “Model of quartz microgrinding,” in:Abstr. Rep. Conf. at Moscow State Institute of Electronics and Mathematics [in Russian], Moscow (1994), p. 2.Google Scholar
  11. 11.
    Yu. V. Kolesnikov and E. M. Morozov,Mechanics of Contact Fracture [in Russian], Nauka, Moscow 1987).Google Scholar
  12. 12.
    J. R. Hirth and Jens Lothe,The Theory of Dislocations, McCraw-Hill Book Company, New-York (1970).Google Scholar
  13. 13.
    A. N. Orlov,Introduction to the Theory of Crystal Defects [in Russian], Vysshaya Shkola, Moscow (1983).Google Scholar
  14. 14.
    I. V. Moskalev, “Processes of abrasive wear on the surface of a solid,” in:Abstr. Rep. Conf. at Moscow State Institute of Electronics and Mathematics [in Russian], Moscow (1995).Google Scholar
  15. 15.
    E. I. Church, “Models for finishing of precision machined optical surfaces,SPIE,676, 142 (1986).Google Scholar
  16. 16.
    T. Izumitani and S. Harada, “Polishing mechanism of optical glasses,”Glass Technol.,12(5), 131 (1971).Google Scholar
  17. 17.
    T. A. Michalke, “Fundamental studies of glass fracture.” in:XVth Int. Congr. on Glass [in Russian], Leningrad (1989).Google Scholar
  18. 18.
    M. Heggi and R. Johnson, “Plastic deformation and hydrolytic softening in a-quartz,”Izv. Akad. Nauk SSSR Ser. Fizicheskaya,51(9), 1634(1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Yu. N. Lokhov
    • 1
  • I. V. Moskalev
    • 1
  • A. S. Cherkasov
    • 1
  1. 1.Moscow State Institute of Electronics and MathematicsMoscowRussia

Personalised recommendations