Advertisement

Marine Biology

, Volume 120, Issue 3, pp 407–413 | Cite as

Intron-targeted PCR: a new approach to survey neutral DNA polymorphism in bivalve populations

  • H. B. S. M. Côrte-Real
  • D. R. Dixon
  • P. W. H. Holland
Article

Abstract

PCR (polymerase chain reaction) amplification of non-coding introns in phylogenetically widespread genes, using DNA primers based on the conserved exon sequences, provides a widely applicable strategy for finding DNA polymorphisms in eukaryotic genomes. Polymorphisms in introns provide a new source of potentially neurtral genetic markers for use in population biology. Here we use this approach to design PCR primers for an intron of calmodulin genes. We show that there are at least two calmodulin genes in mussels of theMytilus edulis species complex, and using gene- and species-specific primers we resolve two alleles at a calmodulin intron locus. Population surveys using PcR of adult mussel DNA reveal that genotype frequencies at most sites surveyed in England, Scotland and Italy, conform to Hardy-Weinberg equilibrium, suggesting that this is a novel neutral genetic marker. The data also provide preliminary evidence for restricted gene flow between mussel populations on the west and northeast coasts of Britain, and for local effects around the Thames estuary.

Keywords

Bivalve Eukaryotic Genome Exon Sequence Restricted Gene Flow Mussel Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad M, Skibinski, DOF, Beardmore JA (1977) An estimate of the amount of variation in the common musselMytilus edulis. Biochem Genet 15: 833–846Google Scholar
  2. Begun DJ, Aquadro CF (1993) African and North American populations ofDrosophila melanogaster are very different at the DNA level. Nature, Lond 365: 548–550Google Scholar
  3. Burke T, Hanotte O, Bruford MW, Cairns E (1991) Multilocus and single locus minisatellite analysis in population biological studies. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA fingerprinting: approaches and applications. Birkhauser, Basel, pp 154–168Google Scholar
  4. Côrte-Real HBSM, Holland PWH, Dixon DR (1994) Inheritance of a nuclear DNA polymorphism assayed in single bivalve larvae. Mar Biol 120: 415–420Google Scholar
  5. Conway-Morris S (1993) The fossil record and the early evolution of the Metazoa. Nature, Lond 361: 219–225Google Scholar
  6. Doyle KE, Kovalick GE, Lee E, Beckingham K (1990)Drosophila melanogaster contains a single calmodulin gene: further structure and expression studies. J molec Biol 213: 599–605Google Scholar
  7. Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science, NY 239: 748–753Google Scholar
  8. Gosling EM (1992) Genetics ofMytilus. In: Gosling EM (ed) The musselMytilus: ecology, physiology, genetics and culture. Elsevier, Amsterdam, pp 309–382Google Scholar
  9. Hardy DO, Bender PK, Kretsinger RH (1988) Two calmodulin genes are expressed inArbacia punctulata. J molec Biol 199: 223–227Google Scholar
  10. Hillis DM, Moritz C (1990) Molecular systematics. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  11. Holland PWH (1993) Cloning genes using the polymerase chain reaction. In: Stern CD, Holland PWH (eds) Essential, developmental biology: a practical approach. IRL Press at Oxford University Press, Oxford, pp 243–255Google Scholar
  12. HMSO (1964) Effects of polluting discharges in the Thames estuary. Water Pollution Research Laboratory Technical Paper 11 Her Majesty's Stationery Office, LondonGoogle Scholar
  13. Jeffeys AJ, Wilson V, Thein SL (1985) Individual-specific “finger-prints” of human DNA. Nature, Lond 316: 76–79Google Scholar
  14. Karl SA, Avise JC (1992) Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science, NY 256: 100–102Google Scholar
  15. Karl SA, Bowen BW, Avise JC (1992) Global population genetic structure and male mediated gene flow in the green turtle (Chelonia mydas)— RFLP analysis of anonymous nuclear loci. Genetics, Austin, Tex 131: 163–173Google Scholar
  16. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  17. Koehn RK (1991) The genetics and taxonomy of species in the genusMytilus. Aquaculture, Amsterdam 94:125–145Google Scholar
  18. Koehn RK, Milkman R, Mitton JB (1976) Population genetics of marine pelecypods, IV. Selection, migration and genetic differentiation in the blue musselMytilus edulis. Evolution 30:2–32Google Scholar
  19. Lessa EP (1992) Rapid surveying of DNA sequence variation in natural populations. Molec Biol Evolut 9:323–330Google Scholar
  20. Lessios HA (1992) Testing electrophoretic data for agreement with Hardy-Weinberg expectations. Mar Biol 112:517–523Google Scholar
  21. Nojima H (1989) Structural organization of multiple rat calmodulin genes. J molec Biol 208:269–282Google Scholar
  22. Nojima H, Sokabe H (1989) Structural organization of calmodulin genes in the rat genome. Adv exp Med Biol 255:223–232Google Scholar
  23. Pamilo P, Varvio-Aho S (1984) Testing genotype frequencies and heterozygosities. Mar Biol 79:99–100Google Scholar
  24. Quinn TW, White BN (1987) Identification of restriction-fragmentlength polymorphisms in genomic DNA of the lesser snow goose (Anser caerulescens caerulescens). Molec Biol Evolut 4: 126–143Google Scholar
  25. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, NY 239:487–491Google Scholar
  26. Schäfer M, Kunz W (1985) rDNA inLocusta migratoria is very variable: two introns and extensive site polymorphisms in the spacer. Nucleic Acids Res 13: 1251–1266Google Scholar
  27. Schlotterer C, Amos B, Tautz D (1991) Conservation of polymorphic simple sequence loci in cetacean species. Nature, Lond 354: 63–65Google Scholar
  28. Selander RK (1970) Behaviour and genetic variation in natural populations. Am Zool 10:53–66Google Scholar
  29. Simmen RCM (1987) The structural organization of the chicken calmodulin gene: a correction. J biol Chem 262: p. 928Google Scholar
  30. Skibinski DOF, Beardmore JA Cross TF (1983) Aspects of the population genetics ofMytilus (Mytilidae: Mollusca) in the British Isles. Biol J Linn Soc 19: 137–183Google Scholar
  31. Smith VL, Doyle KE, Maune JF, Munjaal RP, Beckingham K (1987) Structure and sequence of theDrosophila melanogaster calmodulin gene. J molec Biol 196:471–485Google Scholar
  32. Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of statistics in biological research. 2nd edn. WH Freeman & Co, New YorkGoogle Scholar
  33. Suzuki H, Moriwaki K, Nevo E (1987) Ribosomal DNA (rDNA) spacer polymorphism in mole rates. Molec Biol Evolut 4:602–610Google Scholar
  34. Swanson ME, Sturner SF, Schwartz JH (1990) Structure and expression of theAplysia californica calmodulin gene. J molec Biol 216:545–553Google Scholar
  35. Swofford DL, Selander RB (1981) BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72:281–283Google Scholar
  36. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17: 6463–6471Google Scholar
  37. Workman PL, Niswander JD (1970) Population, genetic studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J hum Genet 22:24–49Google Scholar
  38. Wright S (1965) The interpretation of population structure byF-statistics with special regard to systems of mating. Evolution 19: 395–420Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. B. S. M. Côrte-Real
    • 1
    • 2
  • D. R. Dixon
    • 1
  • P. W. H. Holland
    • 2
  1. 1.Plymouth Marine LaboratoryPlymouthEngland
  2. 2.Department of ZoologyUniversity of OxfordOxfordEngland

Personalised recommendations