Advertisement

Journal of Paleolimnology

, Volume 9, Issue 1, pp 3–22 | Cite as

Late Quaternary palaeolimnology of a tropical marl lake: Wallywash Great Pond, Jamaica

  • F. A. Street-Perrott
  • P. E. Hales
  • R. A. Perrott
  • J. C. Fontes
  • V. R. Switsur
  • A. Pearson
Article

Abstract

Wallywash Great Pond (17° 57′ N, 77° 48 W, 7 m a.s.l.) is the largest perennial lake in Jamaica. It occupies a fault trough within the karstic White Limestone. The Great Pond is a hardwater lake with a pH of 8.2–8.6 and an alkalinity of 3.6–3.9 meq 1−1. Its chemistry is strongly influenced by the spring discharge from the limestone. The lake water is subject to degassing, evaporation and bicarbonate assimilation by submerged plants and algae, resulting in marl precipitation. A 9.23 m core (WGP2), taken from a water depth of 2.8 m, was analysed for magnetic susceptibility, loss-on-ignition, carbonate content, mole % MgCO3 in calcite, and stable isotopes in the fine carbonate fraction. The chronology is based on ten14C and four U/Th dates. Four main sediment types alternate in the core: marl; organic, calcareous mud; organic mud or peat; and earthy, brown, calcareous mud. The marls represent periods of wet/warm climate during sea-level highstands and the organic deposits, shallower, swampy conditions. In contrast, the brown, calcareous muds were laid down when the lake was dry or ephemeral. The last interglacial (120 000- 》 106 000 yr BP) is represented by three distinct marl units. After a dry interval, stable, wet/warm conditions set in from 106 000 to 93 000 yr BP. A dry/cool climate prevailed between 93 000 and at least 9500 yr BP. Three subsequent cycles of alternating wet and dry conditions culminated in flooding of the basin by the Black River during the late Holocene. These recent events cannot be accurately dated by14C due to significant and temporally-variable inputs of ‘dead’ carbon from the springs.

Key words

Jamaica Late Quaternary palaeolimnology marl stratigraphy stable isotopes harwater lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, E. D. & D. H. N. Spence, 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol. 87: 269–283.Google Scholar
  2. Binford, M. W., M. Brenner, T. J. Whitmore, A. Higuera-Gundy, E. S. Deevey & B. Leyden, 1987. Ecosystems, paleoecology, and human disturbance in subtropical and tropical America. Quat. Sci. Rev. 6: 115–128.Google Scholar
  3. Bradbury, J. P., 1971. Paleolimnology of Lake Texcoco, Mexico: Evidence from diatoms. Limnol. Oceanogr. 16: 180–200.Google Scholar
  4. Brammer, E. S., 1978. Phytogenic precipitation of calcium carbonate as a source of sedimentation. Pol. Arch. Hydrobiol. 25: 49–59.Google Scholar
  5. Brenner, M. & M. W. Binford, 1988. A sedimentary record of human disturbance from Lake Miragoane, Haiti. J. Paleolimnol. 1: 85–97.Google Scholar
  6. Buchardt, B. & P. Fritz, 1980. Environmental isotopes as environmental and climatological indicators. In P. Fritz & J. Ch. Fontes (eds), Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment, A, Elsevier, Amsterdam: 473–504.Google Scholar
  7. Bush, M. B. & P. A. Colinvaux, 1990. A pollen record of a complete glacial cycle from lowland Panama. J. Veg. Sci. 1: 105–118.Google Scholar
  8. Cant, R. V., 1972, Jamaica's Pleistocene reef terraces. J. Geol. Soc. Jam. 12: 13–17.Google Scholar
  9. Carver, R. E., 1971. Procedures in Sedimentary Petrology. Wiley, Lond., 653 pp.Google Scholar
  10. Clisby, K. H. & P. B. Sears, 1955. Palynology in southern North America Part III: Microfossil profiles under Mexico City correlated with the sedimentary profiles. Bull. Geol. Soc. Am. 66: 511–520.Google Scholar
  11. Craig, H., 1957. Isotopic standards for reporting carbon and oxygen and correction factors for mass spectrometric analyses of carbon dioxide. Geochim. Cosmochim. Acta 12: 133–149.Google Scholar
  12. Curtis, J. H. & D. A. Hodell, In press. An isotopic and traceelement study of ostracods from Lake Miragoane, Haiti: A 10.5 kyr record of paleosalinity and paleotemperature changes in the Caribbean. Proc. Chapman. Conf. on Continental Isotopic Indicators of Climatic Change.Google Scholar
  13. Dean, W. E., 1974. Determination of carbonate content and organic matter in calcareous sedimentary rocks by loss-onignition: a comparison with other methods. J. Sed. Petrol. 44: 242–248.Google Scholar
  14. Deevey, E. S. & M. Stuiver, 1964. Distribution of natural isotopes of carbon in Linsley Pond and other New England lakes. Limnol. Oceanogr. 9: 1–11.Google Scholar
  15. Deines, P., 1980. The isotopic composition of reduced organic carbon. In P. Fritz & J. C. Fontes (eds), Handbook of Environmental Isotope Geochemistry Vol. 1. The Terrestrial Environment, Elsevier, Amsterdam: 331–407.Google Scholar
  16. Digerfeldt, G. & M. Enell, 1984. Paleoecological Studies of the Past Development of the Negril and Black River Morasses, Jamaica. Appendix 1 to S. Björk, Environmental Feasibility Study of Peat Mining in Jamaica. Report prepared for the Petroleum Corporation of Jamaica.Google Scholar
  17. Durand, A., J-Ch. Fontes, F. Gasse, M. Icole & J. Lang, 1984. Le nord-ouest du lac Tchad au Quaternaire: étude de paléoenvironnements alluviaux, éoliens, palustres et lacustres. Palaeoecology of Africa 16: 215–243.Google Scholar
  18. Eugster, H. P. & L. A. Hardie, 1978. Saline Lakes. In A. Lerman (ed.), Lakes: Chemistry, Geology, Physics, Springer-Verlag, N.Y., 237–293.Google Scholar
  19. Eugster, H. P. & K. Kelts, 1983. Lacustrine chemical sediments. In A. S. Goudie & K. Pye (eds), Chemical Sediments and Geomorphology. Academic Press, London: 321–368.Google Scholar
  20. Farquhar, G. D., J. R. Ehleringer & K. T. Hubick, 1989. Carbon isotope discrimination and photosynthesis. Ann. Rev. Pl. Physiol. & Plant Molec. Biol. 40: 503–537.Google Scholar
  21. Fontes, J. Ch., 1971. Un ensemble destiné à la mesure de l'activité du radiocarbone naturel par scintillation liquide. Revue Géog. Phys. & Géol. Dynamique, 13: 67–86.Google Scholar
  22. Fontes, J. Ch., 1985. Some considerations on groundwater dating using environmental isotopes. In 18th AIH Congress, Cambridge, part 1, Keynote papers: 118–154.Google Scholar
  23. Fontes, J. Ch. & J. M. Garnier, 1979. Determination of the initial activity of the total dissolved carbon. A review of the existing models and a new approach. Wat. Resour. Res. 15: 309–413.Google Scholar
  24. Friedli, H., H. Lötscher, H. Oeschger, U. Siegenthaler & B. Stauffer, 1986. Ice-core record of the13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324: 237–238.Google Scholar
  25. Fritz, P. & S. Poplawski, 1974.18O and13C in shells of freshwater mollusca and their habitat. Earth Planet. Sci. Lett. 24: 91–98.Google Scholar
  26. Garnier, J. M. & J. Ch. Fontes, 1980, Hydrochimie, géochimie des isotopes du milieu et conditions de circulation dans la nappe captive des sables astiens (Hérault). Revue B.R.G.M., 2è série, 3: 199–214.Google Scholar
  27. Gasse, F., J.-Ch. Fontes & P. Rognon, 1974. Variations hydrologiques et extension des lacs holocènes du désert danakil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 15: 109–148.Google Scholar
  28. Hendry, M. D. & S. M. Head, 1985. Late Quaternary sealevel changes and the development of the raised-reef/dune sequence at Great Pedro Bluff, southwestern Jamaica. Proc. 5th Int. Coral Reef Symp. 3: 119–124.Google Scholar
  29. Hodell, D. A., J. H. Curtis, G. A. Jones, A. Higuera-Gundy, M. Brenner, M. W. Binford & K. T. Dorsey, 1991. Reconstruction of Caribbean climate change over the past 10 500 years. Nature 352: 790–793.Google Scholar
  30. Holmes, J. A., F. A. Street-Perrott & M. Ivanovich, in prep. (a) Impact of Late Quaternary climate and sea-level change on a neotropical Karstic Lake.Google Scholar
  31. Holmes, J. A., F. A. Street-Perrott, T. H. E. Heaton, N. C. Davies & P. E. Hales, in prep (b). Chemical and isotopic composition of karstic lakes in Jamaica, West Indies. To be submitted to Hydrobiologia.Google Scholar
  32. Hooghiemstra, H., 1984. Vegetational and Climatic History of the High Plains of Bogotá, Colombia: A Continuous Record of the Last 3.5 Million Years. Diss. Bot. 79: 368 pp.Google Scholar
  33. Hooghiemstra, H., 1989. Quaternary and Upper Pliocene glaciations and forest development in the tropical Andes: evidence from a long high-resolution pollen record from the sedimentary basin of Bogotá, Colombia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 72: 11–26.Google Scholar
  34. Hooghiemstra, H. & J. L. Melice, 1991. Evolution of the orbital periodicities in the high-resolution 30–1450 ka pollen record Funza I, eastern Cordillera, Colombia. Abstracts, Conf. on Sedimentary Sequences and Cyclic Orbital Forcing, Utrecht, 22–23 February: 15–21.Google Scholar
  35. Hsü, K. J. & C. Siegenthaler, 1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology 12: 11–25.Google Scholar
  36. Ivanovich, M. & R. S. Harmon, 1982. Uranium Series Disequilibrium: Applications to Environmental Problems. Clarendon, Oxford, 571 pp.Google Scholar
  37. Jamaican Meteorological Service, 1973. The Climate of Jamaica. Jamaican Meteorological Service, Kingston, Jamaica, 68 pp.Google Scholar
  38. Keeling, C. D.et al., 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. Geophys. Monogr. 55: 165–236. Am. Geophys. Un., Washington D.C.Google Scholar
  39. Kelts, K. & K. J. Hsü, 1978. Freshwater carbonate sedimentation. In A. Lerman (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, N.Y.: 295–323.Google Scholar
  40. Kopp, J. F. & G. D. McKee, 1979. Methods for Chemical Analysis of Water and Wastes. U.S. Envir. Protect. Ag. EPA-600/4-79-020, Cincinnati, Ohio.Google Scholar
  41. Labeyrie, L. D., J.-C. Duplessy & P. L. Blanc, 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 12500 years. Nature 327: 477–482.Google Scholar
  42. Lally, A. E., 1982. Chemical procedures. In M. Ivanovich & R. S. Harmon (eds) Uranium Series Disequilibrium: Applications to Environmental Problems. Clarendon, Oxford: 70–106.Google Scholar
  43. Land, L. S. & S. Epstein, 1970. Late Quaternary diagenesis and dolomitization, north Jamaica. Sedimentology 14: 187–200.Google Scholar
  44. LaZerte, B. D. & J. E. Szalados, 1982. Stable carbon isotope ratio of submerged freshwater macrophytes. Limnol. Oceanogr. 27: 413–418.Google Scholar
  45. Lucas, W. J., 1983. Photosynthetic assimilation of exogenous HCO3- by aquatic plants. Ann. Rev. Pl. Physiol. 34: 71–104.Google Scholar
  46. McKenzie, J. A., 1985. Carbon isotopes and productivity in the lacustrine and marine environments. In W. Stumm (ed.) Chemical Processes in Lakes. Wiley, N.Y.: 99–118.Google Scholar
  47. Mook, W. G., 1980. Carbon-14 in hydrogeological studies. In P. Fritz & J. Ch. Fotnes (ed.) Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment, A, Elsevier, Amsterdam: 49–74.Google Scholar
  48. Müller, G., 1971. Aragonite inorganic precipitation in a freshwater lake. Nature 229: 18.Google Scholar
  49. Müller, G., G. Irion & U. Förstner, 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwiss. 59: 158–164.Google Scholar
  50. Müller, G. & F. Wagner, 1978. Holocene carbonate evolution in Lake Balaton (Hungary): a response to climate and impact of man. In A. Matter & M. Tucker (eds.), Modern and Ancient Lake Sediments. Int. Assoc. Sedimentol., Spec. Publ. 2: 57–81.Google Scholar
  51. Nkemdirim, L. C., 1979. Spatial and seasonal distribution of rainfall and runoff in Jamaica. Geog. Rev. 69: 288–301.Google Scholar
  52. Oana, S. & E. S. Deevey, 1960. Carbon-13 in lake waters, and its possible bearing on paleolimnology. Am. J. Sci. 258A: 253–272.Google Scholar
  53. Osmond, J. K. & J. B. Cowart, 1992. Groundwater. In Ivanovich, M. and Harmon, R. S. (eds.), Uranium Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences, 2nd. ed., Clarendon Press, Oxford: 290–333.Google Scholar
  54. Paul, C. R. C., P. E. Hales, R. A. Perrott & F. A. Street-Perrott, 1993. The freshwater Mollusca of Jamaica. In S. K. Donovan, W. Robinson, T. Saunders & R. M. Wright, (eds.), The Biostratigraphy of Jamaica. Geol. Soc. Am. Mem.Google Scholar
  55. Pazdur, M. F. & Pazdur, A., 1980. Radiocarbon dating of calcareous sediments of north Polish lakes. Pol. Arch. Hydrobiol. 27: 25–36.Google Scholar
  56. Raven, J. A., 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biol Rev. 45: 167–221.Google Scholar
  57. Soil & Land-Use Surveys, 1963. Jamaica: Parish of Saint Elizabeth. Soil and Land-Use Surveys 14. Reg. Res. Centre Brit. Caribb.Google Scholar
  58. Stuiver, M., 1970. Oxygen and carbon ratios of freshwater carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257.Google Scholar
  59. Szabo, B. J. & J. N. Rosholt, 1982. Surficial continental sediments. In M. Ivanovich & R. S. Harmon (eds.), Uranium Series Disequilibrium: Applications to Environmental Problems. Clarendon, Oxford: 246–267.Google Scholar
  60. Talbot, M. R. 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. (Isotope Geoscience Section) 80: 261–279.Google Scholar
  61. Terlecky, P. M., 1974. The origin of a Late Pleistocene and Holocene marl deposit. J. Sed. Petrol. 44: 456–465.Google Scholar
  62. Truesdell, A. H. & B. F. Jones, 1974. WATEQ, a computer program for calculating chemical equilibria of natural waters. U.S. Geol. Surv. J. Res. 2: 233–248.Google Scholar
  63. Turner, J. V., 1982. Kinetic isotope fractionation of carbon-13 during calcium carbonate precipitation. Geochim. Cosmochim. Acta 46: 1183–1191.Google Scholar
  64. Turner, J. V. & P. Fritz, 1983. Enriched13C composition of interstitial waters in sediments of a freshwater lake. Can. J. Earth Sci. 20: 616–621.Google Scholar
  65. Turner, J. V., P. Fritz, P. F. Karrow & B. G. Warner, 1983. Isotopic and geochemical composition of marl lake waters and implications for radiocarbon dating of marl lake sediments. Can. J. Earth Sci. 20: 599–615.Google Scholar
  66. UNDP/FAO, 1971. Appraisal Report of the Pedro Plains, St. Elizabeth, Jamaica. AGL:SF/JAM 3 Tech. Rept. 1/A. FAO, Rome.Google Scholar
  67. Vogel, A., 1978. A Textbook of Quantitative Inorganic Analysis. Longman, Lond., 925 pp.Google Scholar
  68. Wetzel, R. G., 1960. Marl encrustation on hydrophytes in several Michigan lakes. Oikos 11: 223–236.Google Scholar
  69. Wright, H. E. Jr., 1991. Coring tips. J. Paleolimnol. 6: 37–49.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • F. A. Street-Perrott
    • 1
    • 2
  • P. E. Hales
    • 2
  • R. A. Perrott
    • 2
  • J. C. Fontes
    • 3
  • V. R. Switsur
    • 4
  • A. Pearson
    • 5
  1. 1.Environmental Change UnitOxfordUK
  2. 2.Tropical Palaeoenvironments Research GroupSchool of GeographyOxfordUK
  3. 3.Laboratoire d'Hydrologie et de Géochimie IsotopiqueUniversité de Paris-SudOrsay CedexFrance
  4. 4.The Godwin LaboratoryCambridgeUK
  5. 5.Department of BiochemistryUniversity of the West IndiesMona, Kingston 7Jamaica

Personalised recommendations