International Journal of Theoretical Physics

, Volume 31, Issue 12, pp 2103–2113 | Cite as

Cosmological compactification in Kaluza-Klein model and time-dependent cosmological term

  • S. K. Srivastava


Einstein's equations for the generalized (4+D)-dimensional Robertson-Walker model are solved taking the conformally invariant action for the matter field. Compactification of this model is discussed and the compactification time/compactification mass scale for different values ofD is calculated. The resulting 4-dimensional action for gravity is obtained. It is found that a time-dependent cosmological constant is induced which is very large when the cosmic time is small and very small when the cosmic time is large.


Field Theory Elementary Particle Quantum Field Theory Cosmological Constant Mass Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, R. B., Barr, S. M., and Ellis, S. D. (1987).Physical Review D,30, 720.Google Scholar
  2. Appelquist, T., Chodos, A., and Freund, P. G. O. (1987).Modern Kaluza-Klein Theories, Addison-Wesley, Reading, Massachusetts.Google Scholar
  3. Carter, B. (1977).Physical Review D,16, 3395.Google Scholar
  4. Chodos, A., and Detweiler, S. (1980).Physical Review D,21, 2167.Google Scholar
  5. Dereli, T., and Tucker, R. W. (1983).Physics Letters,125B, 133.Google Scholar
  6. Freund, P. G. O. (1982).Nuclear Physics B,209, 146.Google Scholar
  7. Kaluza, T. (1921).Sitzungberichte der Preussichen Akademie der Wissenschaften zu Berlin, Mathematik Physik Klasse,1921, 966.Google Scholar
  8. Klein, O. (1926).Zeitschrift für Physik,37, 89.Google Scholar
  9. Kolb, E. W., and Slansky, R. (1984).Physics Letters,145B, 39.Google Scholar
  10. Maeda, K. (1984).Physical Review D,30, 2482.Google Scholar
  11. Massey, W. S. (1967).Algebraic Topology: An Introduction, Harcourt, Brace and World.Google Scholar
  12. Miller, Jr., W. (1977).Symmetry and Separation of Variables, Addison-Wesley, Reading, Massachusetts.Google Scholar
  13. Randjbar-Daemi, Salam, A., Strathdee, J. (1984).Physics Letters,135B, 388.Google Scholar
  14. Sahadev, D. (1984).Physical Review D,30, 2495.Google Scholar
  15. Toms, D. J. (1986).Canadian Journal of Physics,64, 644.Google Scholar
  16. Weinberg, S. (1989).Review of Modern Physics,61, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • S. K. Srivastava
    • 1
  1. 1.Department of MathematicsNorth Eastern Hill UniversityShillongIndia

Personalised recommendations