Advertisement

Journal of comparative physiology

, Volume 129, Issue 1, pp 67–78 | Cite as

Electrophysiology of bioluminescent excitable epithelial cells in a polynoid polychaete worm

  • Albert A. Herrera
Article

Summary

  1. 1.

    An electrophysiological study was made of the bioluminescent epithelial cells (photocytes) of the wormHesperonoe complanata (Polychaeta: Polynoidae.)

     
  2. 2.

    Resting photocyte membrane potential is −72±2 (s.d.) mV and decreases by 55 mV as external K concentration is increased from 10 to 100 mM.

     
  3. 3.

    Depolarization activates two separate regenerative inward currents, both resulting in all-or-none action potentials. The action potential with the lower threshold has an amplitude of 43±4 (s.d.) mV, is Na-dependent but tetrodotoxin-insensitive and is not associated with luminescence. The action potential with the higher threshold overshoots the reference potential by 13±6 (s.d.) mV, increases by 29 mV for a tenfold increase in Ca concentration and persists in Na-free solution. Under some conditions this spike is followed by a low conductance, Ca-dependent depolarized plateau which abruptly terminates after 274±17 (s.d.) s.

     
  4. 4.

    Luminescence accompanies each Ca spike. Reducing Ca influx reduces light emission. Depolarization in Ca-free medium does not produce light. It is therefore concluded that the intracellular light producing mechanism is Ca-activated and that Ca ions mediate excitation-luminescence coupling.

     
  5. 5.

    Photocytes receive direct excitatory innervation. Large depolarizing postsynaptic potentials occur upon nerve stimulation.

     
  6. 6.

    These electrical properties adequately explain in vivo bioluminescence.

     

Keywords

Epithelial Cell Membrane Potential Lower Threshold Nerve Stimulation Polychaeta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

ASW

Artificial sea water

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassot, J.M.: Une forme microtubulaire et paracristalline de reticulum endoplasmique dans les photocytes des Annelides Polynoinae. J. Cell Biol.31, 135–158 (1966)Google Scholar
  2. Bassot, J.M., Bilbaut, A.: Bioluminescence des élytres d'Acholoe. III. Déplacement des sites d'origine au cours des émissions. Biol. Cell.28, 155–162 (1977a)Google Scholar
  3. Bassot, J.M., Bilbaut, A.: Bioluminescence des élytres d'Acholoe. IV. Luminescence et fluorescence des photosomes. Biol. Cell.28, 163–168 (1977b)Google Scholar
  4. Bilbaut, A., Bassot, J.M.: Bioluminescence des élytres d'Acholoe. II. Donnees photométriques. Biol. Cell.28, 145–164 (1977)Google Scholar
  5. Binstock, L., Goldman, L.: Giant axon ofMyxicola: Some membrane properties as observed under voltage clamp. Science158, 1467–1479 (1967)Google Scholar
  6. Blinks, J.R., Prendergast, F.G., Allen, D.G.: Photoproteins as biological calcium indicators. Pharmacol. Rev.28, 1–93 (1976)Google Scholar
  7. Clusin, W.T., Spray, D.C., Bennett, M.V.L.: Activation of a voltage insensitive conductance by inward calcium current. Nature256, 425–427 (1975)Google Scholar
  8. Eckert, R.: Excitation and luminescence inNoctiluca. In: Bioluminescence in progress. Johnson, F.H. Haneda, Y., (eds.), pp. 269–300. Princeton University Press 1966Google Scholar
  9. Eckert, R., Naitoh, Y., Machemer, H.: Calcium in the bioelectric and motor functions ofParamecium. Symp. Soc. Exp. Biol.30, 233–255 (1976)Google Scholar
  10. Gould-Somero, M., Jaffe, L.A.: Electrically mediated fast polyspermy block in eggs of the marine wormUrechis. J. Cell Biol.75, 37a (1977)Google Scholar
  11. Gradmann, D.: ‘Metabolic’ action potentials inAcetabularia. J. Membr. Biol.29, 23–45 (1976)Google Scholar
  12. Hagiwara, S.: Ca dependent action potential. In: Membranes: A series of advances, Vol. 3. Eisenmann, G. (ed.), pp. 359–381. New York: Dekker 1975Google Scholar
  13. Hagiwara, S., Takahashi, K.: Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J. Gen. Physiol.50, 583–601 (1967)Google Scholar
  14. Hagiwara, S., Takahashi, K., Junge, D.: Excitation-contraction coupling in a barnacle muscle fiber as examined with voltage clamp technique. J. Gen. Physiol.51, 157–175 (1967)Google Scholar
  15. Hagiwara, S., Fukuda, J., Eaton, D.C.: Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J. Gen. Physiol.63, 564–578 (1974)Google Scholar
  16. Haswell, W.A.: On the structure and functions of the elytra of aphroditacean annelids. Ann. Mag. Nat. Hist. (5)10, 238–242 (1882)Google Scholar
  17. Herrera, A.A.: Ca ions couple membrane excitation to intracellular luminescence. J. Cell Biol.75, 113a (1977)Google Scholar
  18. Herrera, A.A., Hastings, J.W., Morin, J.G.: Bioluminescence in cell free extracts of the scale wormHarmothoe (Annelida: Polynoidae). Biol. Bull.147, 480–481 (1974)Google Scholar
  19. Humason, G.L.: Animal tissue techniques, 3rd Ed. San Francisco: Freeman 1972Google Scholar
  20. Isenberg, G.: Is potassium conductance of cardiac Purkinje fibers controlled by [Ca2+]? Nature253, 273–274 (1975)Google Scholar
  21. Katz, B., Miledi, R.: Tetrodotoxin-resistant electrical activity in presynaptic terminals. J. Physiol.203, 459–487 (1969)Google Scholar
  22. Kostyuk, P.G., Krishtal, O.A.: Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurones. J. Physiol.270, 569–580 (1977)Google Scholar
  23. Krnjevic, K., Lisiewicz, A.: Injections of calcium ions into spinal motoneurones. J. Physiol.225, 363–390 (1972)Google Scholar
  24. Lecuyer, B., Arrio, B.: Some spectral characteristics of the light emitting system of polynoid worms. Photochem. Photobiol.22, 213–215 (1975)Google Scholar
  25. Mackie, G.O.: Propagated spikes and secretion in a coelenterate glandular epithelium. J. Gen. Physiol.68, 313–325 (1976)Google Scholar
  26. Mackie, G.O., Bone, Q.: Locomotion and propagated skin impulses in salps (Tunicata: Thaliacea). Biol. Bull.153, 180–197 (1977)Google Scholar
  27. Meech, R.W., Strumwasser, F.: Intracellular calcium injection activates potassium conductance inAplysia nerve cells. Fed. Proc.29, 834 (1970)Google Scholar
  28. Narahashi, T.: Chemicals as tools in the study of excitable membranes. Physiol. Rev.54, 813–889 (1974)Google Scholar
  29. Nicol, J.A.C.: Luminescence in polynoid worms. J. Mar. Biol. Ass. U.K.32, 65–84 (1953)Google Scholar
  30. Nicolas, M.T.: Bioluminescence des élytres d'Acholoe. V. Les principales étapes de la régénération. Arch. Zool. Exp. Gén.118, 103–120 (1977)Google Scholar
  31. Noble, D.: Electrical properties of cardiac muscle attributable to inward going (anomalous) rectification. J. Cell. Comp. Physiol.66, 127–136 (1965)Google Scholar
  32. Oertel, D., Case, J.F.: Neural excitation of the larval firefly photocyte: slow depolarization possibly mediated by cyclic nucleotide. J. Exp. Biol.65, 213–227 (1976)Google Scholar
  33. Patlak, J.B.: The ionic basis for the action potential in the flight muscle of the fly,Sarcophaga bullata. J. comp. Physiol.107, 1–11 (1976)Google Scholar
  34. Pavans de Ceccatty, M., Bassot, J.M., Bilbaut, A., Nicholas, M.T.: Genèse des paracristaux photogènes et de leurs structures d'excitation, dans les cellules de l'élytre d'Acholoe astericola Delle Ch. C. R. Acad. Sci. Paris275, 2363–2366 (1972)Google Scholar
  35. Pavans de Cecatty, M., Bassot, J.M., Bilbaut, A., Nicholas, M.T.: Bioluminescence des élytres d'Acholoe. I. Morphologie des supports structuraux. Biol. Cell.28, 57–64 (1977)Google Scholar
  36. Roberts, A.: The role of propagated skin impulses in the sensory system of young tadpoles. Z. vergl. Physiol.75, 388–401 (1971)Google Scholar
  37. Roberts, A., Stirling, C.A.: The properties and propagation of a cardiac-like impulse in the skin of young tadpoles. Z. vergl. Physiol.71, 295–310 (1971)Google Scholar
  38. Rose, B., Loewenstein, W.R.: Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin. J. Membr. Biol.28, 87–119 (1976)Google Scholar
  39. Satow, Y., Hansma, H.G., Kung, C.: The effect of sodium on “paranoiac” — a membrane mutant ofParamecium. Comp. Biochem. Physiol. A54, 323–329 (1976)Google Scholar
  40. Thomas, R.C.: Intracellular sodium activity and the sodium pump in snail neurons. J. Physiol.220, 55–71 (1972)Google Scholar
  41. Whittam, R.: Control of permeability to potassium in red blood cells. Nature219, 610 (1968)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Albert A. Herrera
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations