Solar Physics

, Volume 160, Issue 1, pp 65–77 | Cite as

Stochastic forces on electrons in the solar flare plasma

  • C. -V. Meister


A Langevin equation for electrons in the plasma of a solar flare with electrostatic lower-hybrid-drift turbulence is developed from first principles and in consistency with the kinetic theory in the polarization approximation. The waves are assumed to be excited by small density gradients causing drift velocities below the thermal ion velocity. First utilizable expressions for the space-time spectral density of the wave energy are given, and estimates of the mean wave force on an electron as well as of the intensity of the stochastic wave force are made. It seems that almost electrostatic lower-hybrid-drift waves could contribute to electron chaotization in solar flare plasmas.


Flare Spectral Density Density Gradient Wave Energy Kinetic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belyi, V. V. and Meister, C.-V.: 1989,Contrib. Plasma Phys. (Leipzig) 29, 447.Google Scholar
  2. Berezinski, V. S., Bulanov, S. V., Dogiel, V. A., Ginzburg, V. L., Ptuskin, V. S.: 1990,Astrophysics of Cosmic Rays, North-Holland, Amsterdam.Google Scholar
  3. Biskamp, D. and Welter, H.: 1989,Solar Phys. 120, 49.Google Scholar
  4. Biskamp, D.: 1993Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge.Google Scholar
  5. Büchner, J. and Zelenyi, L. M.: 1988,ESA SP-285 2, 21.Google Scholar
  6. Büchner, J., Meister, C.-V., and Nikutowski, B.: 1988,ESA SP-285 2, 35.Google Scholar
  7. Gary, S. P.: 1980,Phys. Fluids 23(6), 1193.Google Scholar
  8. Huba, J. D., Gladd, N. T., and Papadopoulos, K.: 1978,J. Geophys. Res. 83, 5217.Google Scholar
  9. Isliker, H. and Benz, A. O.: 1994,Astron. Astrophys. Ser. 104, 145.Google Scholar
  10. Klimontovich, Yu. L.: 1982,Statistical Physics, Nauka, Moscow; 1993, Springer-Verlag, Berlin.Google Scholar
  11. Klimontovich, Yu. L.: 1990,Turbulent Motion and Structure of Chaos. A New Approach to the Statistical Theory of Open Systems, Nauka, Moscow; 1991, Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
  12. Meister, C.-V.: 1993,Contrib. Plasma Phys. (Leipzig) 33, 527.Google Scholar
  13. Meister, C.-V., Nikutowski, B., Schindler, K., and Arendt, U.: 1991,Contrib. Plasma Phys. (Leipzig) 31, 95.Google Scholar
  14. Mikic, Z., Barnes, C. D., and Schnack, D. D.: 1988,Astrophys. J. 328, 830.Google Scholar
  15. Priest, E.R.: 1988,ESA SP-285 2, 73.Google Scholar
  16. Wiechen, H., and Schindler, K.: 1991, in K.-H. Glaβmeier and M. Scholer (eds.),Plasma Physics in the Solar System, BI-Wissenschaftsverlag, Mannheim, p. 139.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • C. -V. Meister
    • 1
  1. 1.Institute for Theoretical Physics and Astrophysics at Potsdam UniversityPotsdamGermany

Personalised recommendations