Advertisement

Journal of comparative physiology

, Volume 148, Issue 3, pp 303–311 | Cite as

A biochemical approach to the electrogenic potassium pump of insect sensilla: Potassium sensitive ATPases in the labellum of the fly

  • Helmut Wieczorek
Article

Summary

A membrane bound, potassium sensitive ATPase which occurs in the proboscis ofProtophormia terraenovae (Diptera, Calliphoridae) is described. This ATPase activity is found only in the sensilla-rich labella but not in the haustella which contain few sensilla. Density gradient centrifugation shows that the enzyme is not of mitochondrial origin. It is insensitive to sodium azide, a specific inhibitor of mitochondrial ATPases, and has a relatively low affinity to potassium: half maximal activation is reached at approximately 70 mmol/l potassium.

It is suggested that the potassium activated ATPase in the labellum of the fly is an integral constituent of the electrogenic potassium pump, which may be important for the generation of receptor currents.

Keywords

Enzyme Sodium Potassium Centrifugation Azide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

TEV

transepithelial voltage

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Booting SL, Simon KA, Hawkins NM (1961) Studies on sodium-potassium activated adenosinetriphosphatase. I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys 95:416–423Google Scholar
  2. Broyles JL, Hanson FE, Shapiro AM (1976) Ion dependence of the tarsal sugar receptor of the blowflyPhormia regina. J Insect Physiol 22:1587–1600Google Scholar
  3. Cereijo-Santaló R (1972) The effect of electrolytes on the 2,4-Dinitrophenol activated ATPase of rat liver mitochondria. Arch Biochem Biophys 148:22–26Google Scholar
  4. Cooperstein SJ, Lazarow A (1951) A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem 189:665–670Google Scholar
  5. Gnatzy W, Weber KM (1978) Tormogen cell and receptorlymph space in insect olfactory sensilla. Fine structure and histochemical properties inCalliphora. Cell Tissue Res 189:549–554Google Scholar
  6. Harvey WR (1980) Water and ions in the gut. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 105–124Google Scholar
  7. Harvey WR, Cioffi M, Wolfersberger MG (1981) Portasomes as coupling factors in active ion transport and oxidative phosphorylation. Am Zool 21:775–791Google Scholar
  8. Heidrich HG, Geiger R (1980) Kininogenase activity in plasma membranes and cell organelles from rabbit kidney cortex: Subcellular localization of renal kallikrein by free-flow electrophoresis and density-gradient fractionation. Kidney Int 18:77–85Google Scholar
  9. Kaissling KE, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Satelle DB et al. (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Biomedical Press Elsevier/North-Holland, Amsterdam, pp 261–282Google Scholar
  10. Keynes RC (1973) Comparative aspects of transport through epithelia. In: Ussing HH, Thorn NA (eds) Transport mechanisms in epithelia. Munksgaard, Copenhagen, pp 505–511Google Scholar
  11. Langer H, Lues I, Rivera ME (1976) Arginine phosphate in compound eyes. J Comp Physiol 107:179–184Google Scholar
  12. Mandel LJ, Moffett DF, Jöbsis FF (1975) Redox state of respiratory chain enzymes and potassium transport in silkworm midgut. Biochim Biophys Acta 408:123–134Google Scholar
  13. Mandel LJ, Riddle TG, Storey JM (1980) Role of ATP in respiratory control and active transport in tobacco hornworm midgut. Am J Physiol 238 (Cell Physiol 7):C10-C14Google Scholar
  14. Morita H (1967) Effect of salts on the sugar receptor of the fleshfly. In: Hayashi T (ed) Proc II. int symp olfaction and taste. Pergamon Press, Oxford, pp 787–798Google Scholar
  15. Morita H (1972) Primary processes of insect chemoreception. In: Kotani M (ed) Advances in biophysics, vol 3. University of Tokyo Press, Tokyo, pp 161–198Google Scholar
  16. Morita H, Yamashita S (1966) Further studies on the receptor potential of chemoreceptors of the blowfly. Mem Fac Sci Kyushu Univ Ser E 4:83–93Google Scholar
  17. Muszbeck L, Szabó T, Fésüs L (1977) A highly sensitive method for the measurement of ATPase activity. Anal Biochem 77:286–288Google Scholar
  18. Pecher T (1980) Adenosin-Triphosphatasen in Sinnesepithelien von Insekten. Diplomarbeit, Universität RegensburgGoogle Scholar
  19. Penefsky HS (1979) Mitochondrial ATPase. In: Meister A (ed) Advances in enzymology, vol 49. Wiley, New York, pp 224–288Google Scholar
  20. Popov N, Schmitt M, Schulzeck S, Matthies H (1975) Eine störungsfreie Mikromethode zur Bestimmung des Proteingehaltes in Gewebehomogenaten. Acta Biol Med Ger 34:1441–1446Google Scholar
  21. Rivera ME (1975) The ATPase system in the compound eye of the blowfly,Calliphora erythrocephala (Meig.). Comp Biochem Physiol 52 B:227–234Google Scholar
  22. Shiraishi A, Miyachi N (1976) The peripheral inhibition of the tarsal sugar receptor by sodium chloride in the proboscis extension response of the blowfly,Phormia regina M. J Comp Physiol 110:97–109Google Scholar
  23. Steck TL (1972) Membrane isolation. In: Fox CF, Keith AD (eds) Membrane molecular biology. Sinauer, Stanford, pp 76–114Google Scholar
  24. Thurm U (1972) The generation of receptor potentials in epithelial receptors. In: Schneider D (ed) Proc IV int symp olfaction and taste. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 95–101Google Scholar
  25. Thurm U (1974) Basics of the generation of receptor potentials in epidermal mechanoreceptors of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein-Westf Akad Wiss, Opladen, pp 354–385Google Scholar
  26. Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 735–764Google Scholar
  27. Thurm U, Wessel G (1979) Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods I. Comparative data. J Comp Physiol 134:119–130Google Scholar
  28. Wieczorek H (1976) The glycoside receptor of the larvae ofMamestra brassicae L. (Lepidoptera, Noctuidae). J Comp Physiol 106:153–176Google Scholar
  29. Wilczek M (1967) The distribution and neuroanatomy of the labellar sense organs of the blowflyPhormia regina Meigen. J Morphol 122:175–201Google Scholar
  30. Wolfersberger MG (1979) A potassium-modulated plasma membrane adenosine triphosphatase from the midgut ofManduca sexta larvae. Fed Proc 38:242Google Scholar
  31. Zerahn K (1971) Active transport of the alkali metals by isolated midgut ofHyalophora cecropia. Philos Trans R Soc Lond [Biol] 262:315–321Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Helmut Wieczorek
    • 1
  1. 1.Institut für ZoologieUniversität RegensburgRegensburgGermany

Personalised recommendations