Skip to main content
Log in

The geometry of generalized quantum logics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Let II be a quantum logic; by this we mean an orthocomplemented, orthomodular, partially ordered set. We assume that II carries a sufficiently large collection Δ of states (probability measures). Then, Δ is embedded as a base for the cone of a partially ordered normed spaceL and II is also embedded in the dual order-unit Banach spaceL *. We consider conditions on the pairs (Δ, II) and (L,L *) that guarantee that II is a dense subset of the extreme points of the positive part of the unit ball ofL *. We demonstrate a connection of these conditions in noncommutative measure theory. The assumptions made here are far weaker than the assumptions of the traditional quantum mechanical formalisms and also apply to situations quite different from quantum mechanics. Finally, we show the connections of this theory to the well-known models of quantum mechanics and classical measure theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfsen, E. M. (1971).Compact Convex Sets and Boundary Integrals, Springer-Verlag, New York.

    Google Scholar 

  • Alfsen, E. M., and Schultz, F. W. (1974).Non-commutative Spectral Theory for Affine Function Spaces on Convex Sets, Part I. Preprint Series, Institute of Mathematics, University of Oslo.

  • Bade, W. G. (1971).The Banach Space C(S), Aarhus University Lecture Notes Series, No. 26.

  • Birkhoff, G., and von Neumann, J. (1936).Annals of Mathematics,37, 823.

    Google Scholar 

  • Dixmier, J. (1948).Duke Mathematical Journal,15, 1057.

    Google Scholar 

  • Edwards, D. A. (1964).Proceedings of the London Mathematical Society,14, 399.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1972).Journal of Mathematical Physics,13, 1667.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1973a).Journal of Mathematical Physics,14, 1472.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1973b).Foundations of Quantum Mechanics and Ordered Linear Spaces, Lecture Notes in Physics 29, Springer-Verlag, New York.

    Google Scholar 

  • Gleason, A. M. (1957).Journal of Rational Mechanical Analysis,6, 885.

    Google Scholar 

  • Gudder, S. (1973).International Journal of Theoretical Physics,7, 205.

    Google Scholar 

  • Gunson, J. (1967).Communications of Mathematical Physics,7, 262.

    Google Scholar 

  • Jauch, J. M. (1968).Foundations of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Kadison, R. V. (1951).Annals of Mathematics,54, 325.

    Google Scholar 

  • Kelley, J. L., and Namioka, I. (1963).Linear Topological Spaces, D. van Nostrand, Princeton, New Jersey.

    Google Scholar 

  • Köthe, G. (1969).Topological Vector Spaces I, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 159, Springer-Verlag, New York.

    Google Scholar 

  • Kronfli, N. S. (1970).International journal of Theoretical Physics,3, 191.

    Google Scholar 

  • Ludwig, G. (1970).Deutung des Begriffs “physikalische Theorie”und axiomatische Grundlegund der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens, Lecture Notes in Physics 4, Springer-Verlag, Berlin.

    Google Scholar 

  • Piron (1976).Foundations of Quantum Physics, W. A. Benjamin Co., Reading, Massachusetts.

    Google Scholar 

  • Reed, M., and Simon, B. (1972).Methods of Modern Mathematical Physics, Vol. I, Academic Press, New York.

    Google Scholar 

  • Robertson, A. P., and Robertson, W. J. (1966).Topological Vector Spaces, Cambridge Tracts in Mathematics and Mathematical Physics No. 54, Cambridge University Press.

  • Royden, H. L. (1968).Real Analysis, 2nd ed., Macmillan, New York.

    Google Scholar 

  • Rüttimann, G. T. (1977).Commentarii Mathematici Helvitici,52, 129.

    Google Scholar 

  • Rüttimann, G. T., and Cook, T. A. (1979). “Symmetries on Quantum Logics” (submitted for publication).

  • Schatten, R. (1960).Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin.

    Google Scholar 

  • Zierler, N. (1959). “On General Measure Theory,” Ph.D. Thesis, Harvard University.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, T.A. The geometry of generalized quantum logics. Int J Theor Phys 17, 941–955 (1978). https://doi.org/10.1007/BF00678422

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00678422

Keywords

Navigation