Advertisement

International Journal of Theoretical Physics

, Volume 31, Issue 10, pp 1899–1907 | Cite as

Quantum logics and completeness criteria of inner product spaces

  • Anatolij Dvurečenskij
Article

Abstract

We present the survey of measure-theoretic completeness criteria for inner product spaces using methods and notions important for quantum logics. Moreover, some new criteria and open problems are given.

Keywords

Field Theory Elementary Particle Quantum Field Theory Open Problem Product Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarnes, J. F. (1970). Quasi-states onC *-algebras,Transactions of the American Mathematical Society,149, 601–625.Google Scholar
  2. Amemiya, I., and Araki, H. (1966/1967). A remark on Piron's paper,Publications RIMS Kyoto,A2, 423–427.Google Scholar
  3. Canetti, A., Marino, G. (1988). Completeness and Dacey pre-Hilbert spaces, Preprint, Universitá della Calabria.Google Scholar
  4. Cattaneo, G., and Marino, G. (1986). Completeness of inner product spaces with respect to splitting subspaces,Letters in Mathematical Physics,11, 15–20.Google Scholar
  5. Cattaneo, G., Franco, G., and Marino, G. (1987). Ordering on families of subspaces of pre-Hilbert space and Decay pre-Hilbert space,Boll. Univ. Mat. Ital. B,1, 167–183.Google Scholar
  6. Dorofeev, S. V., and Sherstnev, A. N. (1990). Frame-type functions and their applications,Izvestiya Vuzov Matematika,4, 23–29 [in Russian].Google Scholar
  7. Drisch, T. (1979). Generalization of Gleason's theorem,International Journal of Theoretical Physics,18, 239–243.Google Scholar
  8. Dvurečenskij, A. (1978). Signed states on a logic,Mathematica Slovaca,28, 33–40.Google Scholar
  9. Dvurečenskij, A. (1988). Completeness of inner product spaces and quantum logic of splitting subspaces,Letters in Mathematical Physics,15, 231–235.Google Scholar
  10. Dvurečenskij, A. (1989a). States on families of subspaces of pre-Hilbert spaces,Letters in Mathematical Physics,17, 19–24.Google Scholar
  11. Dvurečenskij, A. (1989b). Frame functions, signed measures and completeness of inner product spaces,Acta Universitas Carolinae Mathematica et Physica,30, 41–49.Google Scholar
  12. Dvurečenskij, A. (1990a). Frame function and completeness,Demonstratio Mathematica,23, 515–519.Google Scholar
  13. Dvurečenskij, A. (1990b). Regular, finitely additive states and completeness of inner product spaces, inProceedings of the Second Winter School on Measure Theory, Liptovsky Ján, 47–50.Google Scholar
  14. Dvurečenskij, A. (1991). Regular measures and completeness of inner product spaces; inContributions to General Algebra, Vol. 7, Hölder-Pichler-Tempsky Verlag, Vienna, and B. G. Teubner Verlag, Stuttgart, 137–147.Google Scholar
  15. Dvurečenskij, A. (1992). Finitely additive Gleason measures,Proceedings of the American Mathematical Society,115, 191–198.Google Scholar
  16. Dvurečenskij, A. (n.d.). Regular charges and completeness of inner product spaces,Atti Seminario Matematico e Fisico Universita degli Modena, to appear.Google Scholar
  17. Dvurečenskij, A., and Mišik, Jr., L. (1988). Gleason's theorem and completeness of inner product spaces,International Journal of Physics,27, 417–426.Google Scholar
  18. Dvurečenskij, A., and Pulmannová, S. (1988). State on splitting subspaces and completeness of inner product spaces,International Journal of Theoretical Physics,27, 1059–1067.Google Scholar
  19. Dvurečenskij, A., and Pulmannová, S. (1989). A signed measure completeness criterion,Letters in Mathematical Physics,17, 253–261.Google Scholar
  20. Dvurečenskij, A., Neubrunn, T., and Pulmannová, S. (1990). Finitely additive states and completeness of inner product spaces,Foundations of Physics,20, 1091–1102.Google Scholar
  21. Dvurečenskij, A., Neubrunn, T., and Pulmannová, S. (1992). Regular states and countable additivity on quantum logics,Proceedings of the American Mathematical Society,114, 931–938.Google Scholar
  22. Eilers, M., and Horst, E. (1975). The theorem of Gleason for nonseparable Hilbert space,International Journal of Theoretical Physics,13, 419–424.Google Scholar
  23. Gleason, A. M. (1957). Measures on closed subspaces of a Hilbert space,Journal of Mathematics and Mechanics,6, 885–893.Google Scholar
  24. Gross, H., and Keller, A. (1977). On the definition of Hilbert space,Manuscripta Mathematica,23, 67–90.Google Scholar
  25. Gudder, S. P. (1974). Inner product spaces,American Mathematical Monthly,81, 29–36.Google Scholar
  26. Gudder, S. P. (1975). Correction to “Inner product spaces,”American Mathematical Monthly,82, 251–252.Google Scholar
  27. Gudder, S. P., and Holland, Jr., S. (1975). Second correction to “Inner product spaces,”American Mathematical Monthly,82, 818.Google Scholar
  28. Hamhalter, J., and Pták, P. (1987). A completeness criterion for inner product spaces,Bulletin of the London Mathematical Society,19, 259–263.Google Scholar
  29. Rüttimann, G. T. (1990). Decomposition of cone of measures,Atti Seminario Matematico e Fisico Universita Modena,37, 109–121.Google Scholar
  30. Sherstnev, A. N. (1974). On the charge notion in noncommutative scheme of measure theory, in:Veroj. Metod i Kibern., Kazan, No. 10–11, pp. 68–72 [in Russian].Google Scholar
  31. Varadarajan, V. S. (1968).Geometry of Quantum Theory, Van Nostrand, Princeton, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Anatolij Dvurečenskij
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologne 41Germany

Personalised recommendations