Journal of Paleolimnology

, Volume 13, Issue 1, pp 65–77 | Cite as

Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palaeoclimatic changes

  • Wim Vyverman
  • Koen Sabbe


Indirect and direct gradient ordination techniques were used to study the relationship between present-day benthic and periphytic diatom assemblages and environmental factors along an altitudinal gradient in Papua New Guinea. Both within the screened initial data-set and a narrowly-defined subset of soft-water lakes, shifts in diatom assemblages are clearly related to altitudinal differences. This relation is used to construct transfer functions for inferring altitude (and hence average water temperature) from the diatom records. Calibration by canonical correspondence analysis (CCA) and simple weighted averaging calibration proved to be superior to models using WA with tolerance downweighting and to a simple WA model based on a selection of 52 indicator taxa. From the calibration models and the linear relationship between altitude and epilimnetic water temperature, the average lake water temperature can be predicted with an accuracy of 3.2°C. After further refinement, a transfer function for palaeotemperature based on diatoms would be of potential value for climatic reconstructions in tropical regions.

Key words

diatom assemblages altitudinal gradient Papua New Guinea calibration palaeotemperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arigo, R., S. E. Howe & T. Webb, 1986. Climatic calibration of pollen data: an example and annotated computing instructions. In: Berglund, B. E. (ed.). Handbook of Holocene Palaeoecology and Palaeohydrology, Wiley & Sons, Chichester: 817–847.Google Scholar
  2. Atkinson, T. C., K. R. Briffa, G. R. Goope, M. J. Joachim & D. W. Perzy, 1986. Climatic calibration of coleopteran data. In: Berglund, B. E. (ed.). Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley & Sons, Chichester: 851–858.Google Scholar
  3. Barron, J. A., 1973. Late Miocene-Early Pliocene palaeotemperatures for California from marine diatoms evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 14: 277–291.Google Scholar
  4. Battarbee, R. W., 1986. Diatom analysis. In: Berglund, B. E. (ed.). Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley & Sons, Chichester: 527–570.Google Scholar
  5. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstructions. Phil. Trans. r. Soc. Lond. series B, 327: 263–278.Google Scholar
  6. Charles, D. F., 1990. A checklist for describing and documenting diatom and chrysophyte calibration data stes and equations for inferring water chemistry. J. Paleolimnol. 3: 175–178.Google Scholar
  7. Charles, D. F. & J. P. Smol, 1988. New methods for using diatoms and chrysophytes to infer past pH of low alkalinity lakes. Limnol. Oceanogr. 33: 1451–1462.Google Scholar
  8. Chambers, M. R., 1987. The freshwater lakes of Papua New Guinea: an inventory and limnological review. J. Trop. Ecol. 3: 1–23.Google Scholar
  9. Denys, L. & C. Verbruggen, 1989. A case of drowning — the end of Subatlantic peat growth and related palaoeenvironmental changes in the lower Scheldt Basin (Belgium) based on diatom and pollen analysis. Revue Paleaobot. Palynol. 59: 7–36.Google Scholar
  10. Dixit, S. S., A.J. Dixit & J. P. Smol, 1989. Relationship between chrysophyte assemblages and environmental variables in seventy-two Sudbury lakes as examined by canocical correspondence analysis (CCA). Can. J. Fish. aquat. Sci. 46: 1667–1676.Google Scholar
  11. Dixit, S. S., J. P. Smol, D. S. Andersen & R. B. Davis, 1990. Utility of scaled chrysophytes for inferring pH in northern New England lakes. J. Paleolimnol. 3: 269–286.Google Scholar
  12. Dixit, S. S., B. F. Cumming, H. J. B. Birks, S. M. Smol, J. C. Kingston, A. J. Uutala, D. F. Charles & K. E. Cambrun, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol. 8: 27–47.Google Scholar
  13. Efron, B. & G. Gong, 1983. A leisurely look at the bootstrap, the jackknife and cross-validation. Am. Stat. 37: 36–48.Google Scholar
  14. Fritz, S. C., 1990. Twentieth-century salinity and waterlevel fluctuations in devils Lake, North Dakota: test of a diatom-based transfer function. Limnol. Oceanogr. 35: 1771–1781.Google Scholar
  15. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  16. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression end calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  17. Hill, M. O., 1979. DECORANA-a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University Ithaca, New York: 1–52.Google Scholar
  18. Imbrie, J. & N. G. Kipp, 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In K. K. Turekian (ed.): The late Cenozoic glacial ages. Yale University Press, New Haven: 77–181.Google Scholar
  19. Jones, V. J., R. J. Flower, P. G. Appleby, J. Natkanski, N. Richardson, B. Rippey, A. C. Stevenson & R. W. Battarbee, 1993. Palaeolimnological evidence for the acidification and atmospheric contamination of lochs in the Cairngorm and Lochnagar areas of Scotland. J. Ecol. 81: 3–24.Google Scholar
  20. Jongman, R. H. G., ter C. J. F. Braak & O. F. R. Van Tongeren, 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen, 299 pp.Google Scholar
  21. Karentz, S., J. E. Cleaver & D. L. Mitchell, 1991. DNA damage in the Antarctic. Nature 350: 28.Google Scholar
  22. Kendall, M. & A. Stuart, 1977. The advanced theory of statistics. Vol. 2. Interference and relationship. Griffin & Company Ltd., 748 pp.Google Scholar
  23. Kling, G. W., W. C. Evans & M. L. Tuttle, 1991. A comparative view of Lakes Nyos and Monoun, Cameroon, West Africa. Ver. int. Ver. Limnol. 24: 1102–1105.Google Scholar
  24. Line, J. M., C. J. F. ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3 — a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolimnol. 10: 147–152.Google Scholar
  25. Oksanen, J., E. Laara, P. Huttunen & J. Merilainen, 1988. Estimation of pH optima and tolerances of diatoms by the methods of weighted averaging, least squares and maximum likelihood, and their use for the prediction of lake acidity. J. Paleolimnol. 1: 39–49.Google Scholar
  26. Prentice, I. C., P. J. Bartlein & T. Webb, 1991. Vegetation and climate change in eastern north America since the last glacial maximum. Ecology 72: 2038–2056.Google Scholar
  27. Roux, M., 1979. Estimation des paléoclimats d'après l'écologie des foraminifères. Cah. Anal. Données 4: 61–79.Google Scholar
  28. Sancetta, C. A., 1979. Oceanography of the North Pacific during the last 18 000 years: evidence from fossil diatoms. Marine Micropal. 4: 103–123.Google Scholar
  29. Sciesielski, P. F., 1974. Silicoflagellate palaeotemperature curve for the southern ocean. Antarct. J.U.S., 9: 269–270.Google Scholar
  30. Seber, G. A. F., 1977. Linear regression analysis. J. Wiley & Sons, New York, 465 pp.Google Scholar
  31. Servant-Vildary, S. & M. Roux, 1990. Variations de température estimées à partir du déplacement en altitude des associations de diatomées dans une séquence holocène de la Cordillère Orientale de Bolivie. C. r. Acad. Sci. Paris, 311: 429–436.Google Scholar
  32. Smith, R. E., B. B. Prézchin, K. S. Baker, R. R. Bidigare, N. P. Boucher, T. Coley, D. Karentz, S. MacIntyre, H. A. Matlock, D. Menzies, M. Ondrusek, Z. Wan & K. J. Waters, 1992. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952–959.Google Scholar
  33. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.Google Scholar
  34. Smol, J. P., I. R. Walker & P. R. Leavit, 1991. Paleolimnology and hindcasting climatic trends. Ver. int. Ver. Limnol. 24: 1240–1246.Google Scholar
  35. Sokal, R. R. & F. S. Rohlf, 1981. Biometry (2ndedition). W. H. Freeman and Company, San Francisco, 859 pp.Google Scholar
  36. Stevenson, A. C., H. J. B. Birks, R. J. Flower & R. W. Battarbee, 1989. Diatom-based pH reconstruction using Canonical Correspondence Analysis. Ambio 18: 228–233.Google Scholar
  37. ter Braak, C. J. F., 1987. CANOCO — a FORTRAN program for CANOnical COmmunity Ordination by correspondence analysis, principal component analysis and redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Wageningen, 95 pp.Google Scholar
  38. ter Braak, C. J. F. & H. Van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar
  39. Thomas, B., C. Kellog & R. S. Truesdale, 1979. Late Quaternary palaeoecology and palaeoclimatology of the Ross Sea: the diatom record. Mar. Micropal. 4: 137–158.Google Scholar
  40. Vyverman, W., 1988. Three new diatom taxa from the central highlands of Papua New Guinea. Diatom Research 3: 259–264.Google Scholar
  41. Vyverman, W., 1989. Diatoms (Bacillariophyta) from Mount Giluwe (Southern Highlands Province, Papua New Guinea). Bull. Soc. r. Bot. Belg. 122: 61–80.Google Scholar
  42. Vyverman, W., 1991. Diatoms from Papua New Guinea. Bibliotheca Diatomologica 22: 1–224, 208 pl.Google Scholar
  43. Vyverman, W., 1992a. Multivariate analysis of periphytic and benthic diatom assemblages from Papua New Guinea. Hydrobiologia 234: 175–193.Google Scholar
  44. Vyverman, W., 1992b. Altitudinal distribution of non-cosmopolitan desmids and diatoms in Papua New Guinea. Br. phycol. J. 27: 49–63.Google Scholar
  45. Walker, D. & G. S. Hope, 1982. Late Quaternary vegetation history. In: Gressit, J. L. (ed.) Biogeography and ecology of New Guinea, Junk, The Hague: 263–286.Google Scholar
  46. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.Google Scholar
  47. Watts, W. A. & J. P. Bradbury, 1982. Palaeoecological studies at lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quat. Res. 17: 56–70.Google Scholar
  48. Wilkinson, Leland, 1990. SYSTAT: The system for statistics. Evenston, IL: Systat, Inc.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Wim Vyverman
    • 1
  • Koen Sabbe
    • 1
  1. 1.Vakgroep Morfologie, Systematiek en EcologieLaboratorium plantkundeGentBelgium

Personalised recommendations