Advertisement

Journal of Paleolimnology

, Volume 13, Issue 1, pp 21–49 | Cite as

Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada

  • Reinhard Pienitz
  • John P. Smol
  • H. John B. Birks
Article

Abstract

We identified, enumerated, and interpreted the diatom assemblages preserved in the surface sediments of 59 lakes located between Whitehorse in the Yukon and Tuktoyaktuk in the Northwest Territories (Canada). The lakes are distributed along a latitudinal gradient that includes several ecoclimatic zones. It also spans large gradients in limnological variables. Thus, the study lakes are ideal for environmental calibration of modern diatom assemblages. Canonical correspondence analysis, with forward selection and Monte Carlo permutation tests, showed that maximum lake depth and summer surface-water temperature were the two environmental variables that accounted for most of the variance in the diatom data. The concentrations of sodium and calcium were also important explanatory variables. Using weighted-averaging regression and calibration techniques, we developed a predictive statistical model to infer lake surface-water temperature, and we evaluated the feasibility of using diatoms as paleoclimate proxies. This model may be used to derive paleotemperature inferences from fossil diatom assemblages at appropriate sites in the western Canadian Arctic.

Key words

diatoms temperature climatic change paleoclimate proxies canonical correspondence analysis weighted-averaging Yukon Northwest Territories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. R. Soc. Lond., B305: 451–477.Google Scholar
  2. Battarbee, R. W., J. P. Smol & J. Meriläinen, 1986. Diatoms as indicators of pH: an historical review. In J. P. Smol, R. W. Battarbee, R. B. Davis, & J. Meriläinen, (eds). Diatoms and Lake Acidity, 5–14. Dr W. Junk, Dordrecht.Google Scholar
  3. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reeonstruction. Phil. Trans. R. Soc. Lond., B327: 263–278.Google Scholar
  4. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.Google Scholar
  5. Bradley, R. S., 1985. Quaternary Paleoclimatology. Allen & Unwin, Boston, 472 pp.Google Scholar
  6. Brock, T. D., 1974. Biology of Microorganisms, 2nd edn. Prentice-Hall, Englewood Cliffs, New Jersey, 852 pp.Google Scholar
  7. Brock, T. D., 1978. Thermophilic Microorganisms and Life at High Temperatures. Springer Verlag, New York, 449 pp.Google Scholar
  8. Bruce, J. P., 1984. Our changing northern climate. Environment Canada, Atmospheric Environment Service, 8th Northern Resources Conference, 10 pp.Google Scholar
  9. Bunt, J. S., 1968. Some characteristics of microalgae isolated from Antarctic sea ice. Antarct. Res. Serv. 11: 1–14.Google Scholar
  10. Camburn, K. E., J. C. Kingston & D. F. Charles, 1984–1986. Paleoecological Investigation of Recent Lake Acidification. PIRLA Diatom Iconograph, PIRLA Unpublished Report Series, Report 3, Indiana University, USA.Google Scholar
  11. Castenholz, R. W., 1969. Thermophilic blue-green algae and the thermal environment. Bact. Rev. 33: 476–504.Google Scholar
  12. Chapin, F. S., P. C. Miller, W. D. Billings & P. I. Coyne, 1980. In J. Brown, P. C. Miller, L. L. Tieszen & F. K. Bunnell, (eds). An Arctic Ecosystem, the Coastal Tundra at Barrow, Alaska, 458–484. Dowden, Hutchinson & Ross, Stroudsburg PA.Google Scholar
  13. Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead & R. J. Wise, 1990. Paleoecological investigation of recent lake acidifcation in the Adirondack Mountains, N. Y. J. Paleolimnol., 3: 195–241.Google Scholar
  14. Christie, C. E. & J. P. Smol, 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. J. Phycol., 29 (in press).Google Scholar
  15. Cleve-Euler, A., 1951–1955. Die Diatomeen von Schweden und Finnland. Bibliotheca Phycologica, J. Cramer Verlag, Lehre.Google Scholar
  16. Cumming, B. F., J. P. Smol & H. J. B. Birks, 1992. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to measured environmental variables. J. Phycol., 28: 162–178.Google Scholar
  17. Cumming, B. F. & J. P. Smol, 1993. Diatoms and their relationship to salinity and other limnological characteristics from 65 Cariboo/Chilcotin region (British Columbia, Canada) lakes. Hydrobiologia (in press).Google Scholar
  18. Curl, H. Jr. & P. Becker, 1970. Terrestrial cryophilic algae of the Antarctic Peninsula. Antarct. J. U. S., 5: 121.Google Scholar
  19. Dauta, A., J. Devaux, F. Piquemal & L. Boumnich, 1990. Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207:221–226.Google Scholar
  20. Dixit, S. S., A. S. Dixit & J. P. Smol, 1989. Relationshi between chrysophyte assemblages and environmental variables in seventy-two Sudbury lakes as examined by canonical correspondence analysis (CCA). Can. J. Fish. Aquat. Sci., 46: 1667–1676.Google Scholar
  21. Dixit, S. S., B. F. Cumming, H. J. B. Birks, J. P. Smol, J. C. Kingston, A. J. Uutala, D. F. Charles & K. E. Camburn, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol., 8: 27–47.Google Scholar
  22. Douglas, M. S. V. & J. P. Smol, 1993. Freshwater diatoms from high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Nova Hedwigia 57: 511–552.Google Scholar
  23. Environment Canada, 1979. Analytical methods manual. Inland Waters Directorate, Water Quality Branch, Ottawa.Google Scholar
  24. Environment Canada, 1989. Ecoclimatic regions of Canada, first approximation. Ecological Land Classification Series, No. 23, Ecoregions Working Group, Ottawa.Google Scholar
  25. Environment Canada, 1975–1990. Yukon ice freeze-up and ice break-up reports, Atmospheric Environment Service, White-horse, Yukon.Google Scholar
  26. Foged, N., 1964. Freshwater diatoms from Spitsbergen. Tromsö Museums Skrifter, No. 11. Universitetsforlaget, Tromsö/Oslo, 205 pp.Google Scholar
  27. Foged, N., 1981. Diatoms in Alaska. Bibliotheca Phycologica, No. 53. J. Cramer Verlag, Vaduz, 317 pp.Google Scholar
  28. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  29. Fukushima, H., 1963. Studies on cryophytes in Japan. Journal of Yokahama Municipal University, Series C, Natural Sciences 43: 1–146.Google Scholar
  30. Gasse, F., V. Lědée, M. Massault & J.-C. Fontes, 1989. Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342: 57–59.Google Scholar
  31. Gauch, H. G. Jr. 1982. Noise reduction by eigenvector ordinations. Ecology 63: 1643–1649.Google Scholar
  32. Germain, H., 1981. Flore des diatomées. Boubée, Paris, 444 pp.Google Scholar
  33. Glew, J., 1989. A new trigger mechanism for sediment samplers. J. Paleolimnol. 2: 241–243.Google Scholar
  34. Glew, J., 1991. Miniature gravity corer for recovering short sediment cores. J. Paleolimnol. 5: 285–287.Google Scholar
  35. Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine plankton diatoms I.Cyclotella nana Nustedt andDetonula confervacea (Cleve) Gran. J. Phycol. 5: 150–157.Google Scholar
  36. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  37. Hartig, J. H. & D. G. Wallen, 1986. The influence of light and temperature on growth and photosynthesis ofFragilaria crotonensis Kitton. J. Freshwat. Ecol. 3: 371–382.Google Scholar
  38. Hein, M. K. & J. D. Koppen, 1979. Effects of thermally elevated discharges on the structure and composition of estuarine periphyton diatom assemblages. Estuar. Coast. Mar. Sci. 9: 385–401.Google Scholar
  39. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.Google Scholar
  40. Hill, M. O., & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  41. Hoham, R., 1975. Optimum temperatures and temperature ranges for growth of snow algae. Arctic and Alpine Research 7: 13–24.Google Scholar
  42. Hustedt, F., 1927–1966. Die Kieselalgen Deutschlands, Osterreichs und der Schweiz. In Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Vol. 7(1–3). Akademische Verlagsgesellschaft, Leipzig.Google Scholar
  43. Hustedt, F. 1957. Die Diatomeenflora des Hubsystems der Weser im Gebiet der Hansestadt Bremen. Abhandlungen des Naturwis-senschaftlichen Vereins Bremen 34: 181–440.Google Scholar
  44. Hutchinson, G. E., 1967. A Treatise on Limnology, Vol. II John wiley & Sons, New York, 1015 pp.Google Scholar
  45. Imbrie, J. & N. G. Kipp, 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Carribbean core. In K. K. Turekian, (ed.). The late Cenozoic Glacial Ages, 71–181, Yale University Press, New Haven.Google Scholar
  46. Jørgensen, E. G., 1957. Diatom periodicity and silicon assimilation. Dansk Botanisk Arkiv 18: 54 pp.Google Scholar
  47. Kilham, P., 1971. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnol. Oceanog., 16: 10–18.Google Scholar
  48. Koivo, L. K. & J. C. Ritchie, 1978. Modern diatom assemblages from lake sediments in the boreal-arctic transition region near the Mackenzie Delta, N. W. T., Canada. Can. J. Bot. 56: 1010–1020.Google Scholar
  49. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer, (eds.). Süßwasserflora von Mitteleuropa, Vol. 2(1–4). Gustav Fischer Verlag, Stuttgart/Jena.Google Scholar
  50. Lamb, H. H. & H. T. Morth, 1978. Arctic ice, atmospheric circulation and world climate. Geographical Journal 144: 1–22.Google Scholar
  51. Line, J. M. & H. J. B. Birks, 1990. WACALIB version 2.1 — a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging. J. Paleolimnol. 3: 170–173.Google Scholar
  52. Line, J. M., C. J. F. Ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3 — a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolimnol. 10: 147–152.Google Scholar
  53. Lund, J. W. G., 1964. Primary production and periodicity of phytoplankton. Verh. Int. Ver. Limnol. 15: 37–56.Google Scholar
  54. Michel, C., L. Legendre, J.-C. Therriault & S. Demers, 1989. Photosynthetic responses of arctic sea-ice microalgae to short-term temperature acclimation. Polar Biol. 9: 437–442.Google Scholar
  55. Mölder, K. & R. Tynni, 1967–1973. Über Finnlands rezente und subfossile Diatomeen. Bull. Geol. Soc. Finland, Vols 39: 199–217, 40: 151–170, 41: 235–251, 42: 129–144, 43: 203–220, 44: 141–149, 45: 159–179.Google Scholar
  56. Patrick, R., 1969. Some effects of temperature on freshwater algae. In P.A. Krenkel & F.L. Parker, (eds.), Biological aspects of thermal pollution, Vanderbilt University Press, Nashville, Tennessee, 161–185.Google Scholar
  57. Patrick, R., 1971. The effects of increasing light and temperature on the structure of diatom communities. Limnol. Oceanogr. 16: 405–421.Google Scholar
  58. Patrick, R., 1974. Effects of abnormal temperatures on algal communities. In J.W. Gibbons & R.R. Sharitz, R.R. (eds), Thermal Ecology, U.S. Atomic Energy Commission, Washington, D.C., 335–349.Google Scholar
  59. Patrick, R. & C. Reimer, 1966. The diatoms of the United States. Vol. 1: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. The Academy of Natural Sciences of Philadelphia, Philadelphia, 688 pp.Google Scholar
  60. Patrick, R. & C. Reimer, 1975. The diatoms of the United States. Vol. 2: Entomoneidaceae, Cymbellaceae, Gornphonemaceae, Epithemiaceae. The Academy of Natural Sciences of Philadelphia, Philadelphia, 213 pp.Google Scholar
  61. Pienitz, R., 1993. Paleoclimate proxy data inferred from freshwater diatoms from the Yukon and the Northwest Territories. Ph.D. thesis, Queen's University, Kingston, Ontario, 220 pp.Google Scholar
  62. Pientiz, R. & J. P. Smol, 1993. Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270: 391–404.Google Scholar
  63. Pienitz, R., J. P. Smol & D. R. S. Lean, 1994a. Chemical limnology of lakes from the southern Yukon to the Tuktoyaktuk Peninsula, Arctic Canada. Int. Revue ges. Hydrobiol. (submitted).Google Scholar
  64. Pienitz, R., J. P. Smol & D. R. S. Lean, 1994b. Chemical limnology of lakes from Yellowknife to Contwoyto Lake (Northwest Territories), Arctic Canada. Int. Revue ges. Hydrobiol. (submitted).Google Scholar
  65. Raven, J. A. & R. J. Geider, 1988. Temperature and algal growth. New Phytol. 110: 441–461.Google Scholar
  66. Rhee, G.-Y. & I. J. Gotham, 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26: 635–648.Google Scholar
  67. Robertson, D. M., 1989. The use of lake water temperature and ice cover as climatic indicators. Ph.D. thesis, University of Wisconsin-Madison, 330 pp.Google Scholar
  68. Seaburg, K. G., B. C. Parker, R. A. Wharton Jr. & G. M. Simmons Jr., 1981. Temperature-growth responses of algal isolates from Antarctic oases. J. Phycol. 17: 353–360.Google Scholar
  69. Servant-Vildary, S. & M. Roux, 1990. Variations de température estimées à partir du déplacement en altitude des associations de diatomées dans une séquence holocène de la Cordillère Orientale de Bolivie. Comptes Rendus de l'Académie des Sciences de Paris 311 (II): 429–436.Google Scholar
  70. Servant-Vildary, S., J. L. Melice, F. Sondag, A. Einarsson, M. Dickman & K. Stewart, 1992. A transfer function diatom/silica displayed in Lake Myvatn (Iceland). Abstracts, 12th International Diatom Symposium, Renesse, The Netherlands.Google Scholar
  71. Shortreed, K. S. & J. G. Stockner, 1986. Trophic status of 19 subarctic lakes in the Yukon Territory. Can. J. Fish. Aquat. Sci. 43: 797–805.Google Scholar
  72. Shuter, B. J., D. A. Schlesinger & A. P. Zimmerman, 1983. Empirical predictors of annual surface water temperature cycles in North American lakes. Can. J. Fish. Aquat. Sci. 40: 1838–1845.Google Scholar
  73. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. Int. Ver. Limnol. 23: 837–844.Google Scholar
  74. Smol, J. P., I. R. Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. Int. Ver. Limnol. 24: 1240–1246.Google Scholar
  75. Stein, J. R., 1963. AChromulina (Chrysophyceae) from snow. Can. J. Bot. 41: 1367–1370.Google Scholar
  76. Stevenson, A. C., H. J. B. Birks, R. J. Flower & R. W. Battarbee, 1989. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio 18: 228–233.Google Scholar
  77. Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-water Chemistry Data-set. ENSIS Publishing, London, 86 pp.Google Scholar
  78. Stoermer, E. F. & T. B. Ladewski, 1976. Apparent optimal temperatures for the occurrence of some common phytoplankton species in southern Lake Michigan. Great Lakes Research Division, Publ. No. 18, University of Michigan, Ann Arbor.Google Scholar
  79. Stuart, R. A. & A. S. Judge, 1991. On the applicability of GCM estimates to scenarios of global warming in the Mackenzie valley area. Climatol. Bull. 25: 147–169.Google Scholar
  80. Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1178.Google Scholar
  81. Ter Braak, C. J. F., 1987a. Unimodal models to relate species to environment. Doctoral Thesis, University of Wageningen, The Netherlands.Google Scholar
  82. Ter Braak, C. J. F., 1987b. Ordination. In R. H. G. Jongman, C. J. F. Ter Braak & O. F. R. Van Tongeren, (eds), Data Analysis in Community and Landscape Ecology, 91–173. Pudoc, Wageningen.Google Scholar
  83. Ter Braak, C. J. F., 1988a. CANOCO — A FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Technical Report LWA-88-02, GLW, Wageningen.Google Scholar
  84. Ter Braak, C. J. F., 1988b. Partial canonical correspondence analysis. In H. H. Bock, (ed.), Classification and related methods of data analysis, 551–558. North Holland, Amsterdam.Google Scholar
  85. Ter Braak, C. J. F., 1990a. CANOCO — a FORTRAN program for CANOnical Community Ordination. Microcomputer Power, Ithaca, New York.Google Scholar
  86. Ter Braak, C. J. F., 1990b. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen. 35 pp.Google Scholar
  87. Ter Braak, C. J. F. & L. G. Barendregt, 1986. Weighted averaging of species indicator values: its efficiency in environmental calibration. Math. Biosci. 78: 57–72.Google Scholar
  88. Ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio, 65: 3–11.Google Scholar
  89. Ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.Google Scholar
  90. Ter Braak, C. J. F. & H. Van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar
  91. Ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia (in press).Google Scholar
  92. Ter Braak, C. J. F., S. Juggins, H. J. B. Birks & H. Van der Voet, 1993. Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species-environment calibration. In G. P. Patil & C. R. Rao, (eds), Multivariate Environmental Statistics, 525–560. Elsevier Science Publishers, Amsterdam.Google Scholar
  93. Tilman, D. & R. L. Kiesling, 1984. Freshwater algal ecology: Taxonomic trade-offs in the temperature dependence of nutrient competitive abilities. In M. J. Klug & C. A. Reddy, (eds), Proceedings of the 3rd International Symposium on Microbial Ecology, 314–319. Michigan State University.Google Scholar
  94. Tynni, R., 1975–1980. Über Finnlands rezente und subfossile Diatomeen. Geol. Survey Finland Bull. 274: 1–55, 284: 1–37, 296: 1–55, 312: 1–93.Google Scholar
  95. Vincent, W. F. & C. Howard-Williams, 1989. Microbial communities in southern Victoria Land streams (Antarctica). II. The effects of low temperature. In W. F. Vincent & J. C. Ellis-Evans, (eds), High Latitude Limnology. Hydrobiologia 172: 39–49.Google Scholar
  96. Vyverman, W., 1992a. Altitudinal distribution of non-cosmopolitan desmids and diatoms in Papua New Guinea. Brit. Phycol. J. 27: 49–63.Google Scholar
  97. Vyverman, W., 1992b. Multivariate analysis of periphytic and benthic diatom assemblages from Papua New Guinea. Hydrobiologia 234: 175–193.Google Scholar
  98. Wahl, H. E., D. B. Fraser, R. C. Harvey & J. B. Maxwell, 1987. Climate of Yukon. Climatological Studies, No. 40, Atmospheric Environment Service, Minister of Supply and Services Canada, Ottawa, 323 pp.Google Scholar
  99. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48: 975–987.Google Scholar
  100. Webb III, T., F. A. Street-Perrott & J. E. Kutzbach, 1987. Late-Quaternary palaeoclimatic data and climate models. Episodes 10: 4–6.Google Scholar
  101. Wetzel, R. G., 1983. Limnology, 2nd edition. Saunders College Publishing, 767 pp.Google Scholar
  102. Zar, J. H., 1984. Biostatistical Analysis, 2nd edition. Prentice-Hall Inc., Englewood Cliffs, N. J., 718 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Reinhard Pienitz
    • 1
  • John P. Smol
    • 1
  • H. John B. Birks
    • 1
    • 2
    • 3
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen's UniversityKingstonCanada
  2. 2.Botanical InstituteUniversity of BergenBergenNorway
  3. 3.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations