Journal of Paleolimnology

, Volume 12, Issue 2, pp 75–86 | Cite as

The paleolimnology of a small waterbody in the Pocono Mountains of Pennsylvania, USA: reconstructing 19th–20th century specific conductivity trends in relation to changing land use

  • Anne-Marie Lott
  • Peter A. Siver
  • Laurence J. Marsicano
  • Kenneth P. Kodama
  • Robert E. Moeller


Remains of scaled chrysophytes, magnetic minerals and pollen were used to analyze the recent paleolimnological history of a small lake, Lake Waynewood, in the Pocono Mountains of Pennsylvania. Important shifts in all three variables were observed over the 133 years represented by the core. The most significant changes occurred near the turn of the century when the watershed was heavily logged. Before the logging event, species such asSynura sphagnicola, S. spinosa, Mallomonas galeiformis andM. duerrschmidtiae were co-dominant members of the flora. Subsequent to the deforestation of the watershed other taxa, includingM. crassisquama, M. caudata andS. petersenii, increased in relative importance. Concurrent with changes in the scaled chrysophytes was a six-fold increase in the concentrations of magnetic material, presumably the result of increased erosion caused by the logging. Changes in pollen grains also correlate well with the onset of the deforestation event. The scaled chrysophyte inferred specific conductivity of the lake has more than tripled, with the primary increase occurring concurrent with the commencement of logging and the increase in magnetic mineral material. The effects of other human-related disturbances are also discussed.

Key words

scaled chrysophytes specific conductivity logging Pocono Mountains magnetic material paleolimnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, R. A., 1987. Synurophyceae classis nov., a new class of algae. Am. J. Bot. 74: 337–353.Google Scholar
  2. Appleby, P. G. & F. Oldfield, 1983. The assessment of210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29–35.Google Scholar
  3. Aubertin, G. M. & J. H. Patric, 1974. Water quality after clearcutting a small watershed in West Virginia. J. Envir. Qual. 3: 243–249.Google Scholar
  4. Baker, J. P. & J. J. Magnuson, 1976. Limnological responses of Crystal Lake (Vilas County, Wisconsin) to intensive recreational use, 1924–1973. Wisconsin Academy of Sciences, Arts and Letters. 64: 47–61.Google Scholar
  5. Battarbee, R. W., 1986. Diatom analysis. In: B. E. Berglund (ed.), Handbook of Holocene palaeoecology and palaeohydrology, pp. 527–570. Wiley and Sons.Google Scholar
  6. Beers, F. W., 1872. Atlas of Wayne County, Pennsylvania. A. Pomeroy and Co., New York.Google Scholar
  7. Benninghoff, W. S., 1962. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et Spores. 4: 332–333.Google Scholar
  8. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc. Lond. B 327: 263–277.Google Scholar
  9. Bormann, F. H. & G. E. Likens, 1979. Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York, 253 pp.Google Scholar
  10. Charles, D. F. & J. P. Smol, 1988. New methods for using diatoms and chrysophytes to reconstruct past lakewater pH. Limnol. Oceanogr. 33: 1451–1462.Google Scholar
  11. Corbett, E. S., J. A. Lynch & W. E. Sopper, 1978. Timber harvesting practices and water quality in the eastern United States. J. For. 76: 484–488.Google Scholar
  12. Cumming, B. F., J. P. Smol & H. J. B. Birks, 1991. The relationship between sedimentary chrysophyte scales (Chrysophyceae and Synurophyceae) and limnological characteristics in 25 Norwegian lakes. Nord. J. Bot. 11: 231–242.Google Scholar
  13. Cumming, B. F., J. P. Smol & H. J. B. Birks, 1992. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to environmental variables. J. Phycol. 28: 162–178.Google Scholar
  14. Dearing, J. A., 1983. Changing patterns of sediment accumulation in a small lake in Scania, southern Sweden. Hydrobiologia 103: 59–64.Google Scholar
  15. Dixit, S. S., A. S. Dixit & R. D. Evans, 1988. Scaled chrysophytes (Chrysophyceae) as indicators of pH in Sudbury, Ontario lakes. Can. J. Bot. 45: 1411–1421.Google Scholar
  16. Dixit, A. S. & S. S. Dixit, 1989. Surface-sediment chrysophytes from 35 Quebec lakes and their usefulness in reconstructing lake-water pH. Can. J. Bot. 67: 2071–2076.Google Scholar
  17. Dixit, S. S., J. P. Smol, D. S. Anderson & R. B. Davis, 1990. Utility of scaled chrysophytes for inferring lakewater pH in northern New England lakes. J. Paleolimnol. 3: 269–287.Google Scholar
  18. Faegri, K. & J. Iversen. 1975. Textbook of pollen analysis. 2nd edition. Hafner Press, New York, NY., 295 pp.Google Scholar
  19. Gearheart, Jackson L., Service Forester, Pennsylvania Bureau of Forestry, Honesdale, PA.Google Scholar
  20. Goodrich, P. G., 1880. The History of Wayne County, Pennsylvania: pp. 268–278.Google Scholar
  21. Gutowski, A., 1989. Seasonal succession of scaled chrysophytes in a small lake in Berlin. Beih. Nova Hedwigia 95: 159–177.Google Scholar
  22. Harshberger, J. W., 1915. Nature and man in the Pocono Mountain region, Pennsylvania. Bull. Geogr. Soc. Philad. 13: 64–71.Google Scholar
  23. Hewlett, J. D., H. E. Post & R. Doss, 1984. Effect of clear- cut silviculture on dissolved ion export and water yield in the piedmont. Wat. Resour. Res. 20: 1030–1038.Google Scholar
  24. Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher & R. S. Pierce, 1970. The effect of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monogr. 40: 23–47.Google Scholar
  25. Lyons, J. C., K. P. Kodama & W. F. Winkley. 1992. Environmental magnetism study of Pocono Lakes, NE PA. Eos. Trans. Amer. Geophys. Union. 73: 101.Google Scholar
  26. Newton, M. V., 1945. The tanneries of Wayne County. On file: Wayne County Historical Society, Honesdale, PA.Google Scholar
  27. Norvell, W. A., C. R. Frink & D. E. Hill, 1979. Phosphorus in Connecticut lakes predicted by land use. Proc. natl. Acad. Sci. 76: 5426–5429.Google Scholar
  28. Patric, J. H., 1976. Soil erosion in the eastern forest. J. For. 74: 671–677.Google Scholar
  29. Patric, J. H., 1980. Effects of wood products harvest on forest soil and water relations. J. Envir. Qual. 9: 73–80.Google Scholar
  30. Prowse, C. W., 1987. The impact of urbanization on major ion flux through catchments: a case study in southern England. Wat. Air Soil Pollut. 32: 277–292.Google Scholar
  31. Roijackers, R. M. M. & H. Kessels, 1986. Ecological characteristics of scale-bearing Chrysophyceae from the Netherlands. Nord. J. Bot. 6: 373–383.Google Scholar
  32. Russell, E. W. B., R. B. Davis, R. S. Anderson, T. E. Rhodes & D. S. Anderson, In Press. Recent centuries of vegetational change in the glaciated northeastern United States. J. Ecol.Google Scholar
  33. Russell, E. W. B., 1980. Vegetational change in northern New Jersey from precolonization to the present: a palynological interpretation. Bull. Torrey Bot. Club. 107: 432–446.Google Scholar
  34. Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Growth and reproductive strategies of freshwater phytoplankton. Edited by C. D. Sandgren. Cambridge University Press, Cambridge: 9–104.Google Scholar
  35. Sartor, J. D., G. B. Boyd & F. J. Agardy, 1974. Water pollution aspects of street surface contaminants. J. Wat. Pollut. Cont. Fed. 46: 458–467.Google Scholar
  36. Siver, P. A., 1989. The distribution of scaled chrysophytes along a pH gradient. Can. J. Bot. 67: 2120–2130.Google Scholar
  37. Siver, P. A., 1991. The Biology ofMallomonas: Morphology, Taxonomy and Ecology. Dr W. Junk Publishers, Kluwer Academic Publishers, Dordrecht, 230 pp.Google Scholar
  38. Siver, P. A., 1993. Inferring the specific conductivity of lake water with scaled chrysophytes. Limnol. Oceanogr. 38: 1480–1492.Google Scholar
  39. Siver, P. A., 1994. The distribution of chrysophytes along environmental gradients: their use as biological indicators. Proceedings of Third International Chrysophyte Symposium. In press.Google Scholar
  40. Siver, P. A. & J. S. Hamer, 1989. Multivariate statistical analysis of the factors controlling the distribution of scaled chrysophytes. Limnol. Oceanogr. 34: 368–381.Google Scholar
  41. Siver, P. A. & J. S. Hamer, 1990. The use of extant populations of scaled chrysophytes for the inference of lakewater pH. Can. J. Fish. aquat. Sci. 47: 1339–1347.Google Scholar
  42. Smol, J. P., D. R. Charles & D. R. Whitehead, 1984. Mallomonadacean (Chrysophyceae) assemblages and their relationships with limnological characteristics in 38 Adirondack (New York) lakes. Can. J. Bot. 62: 911–923.Google Scholar
  43. Stockmarr, J., 1972. Tablets with spores used in absolute pollen analysis. Pollen et Spores. 13: 615–621.Google Scholar
  44. ter Braak, C. J. F., 1987. Calibration. In: Data analysis in community and landscape ecology, eds. by Jongman, R. H. G., ter Braak, C. J. F. and O. F. R. van Tongeren: 78–90. Pudoc Wageningen.Google Scholar
  45. ter Braak, C. J. F., 1989. CANOCO — an extension of Decorana to analyze species-environment relationships. Hydrobiologia 184: 169–170.Google Scholar
  46. Thompson, R., R. W. Battarbee, P. E. O'Sullivan & F. Oldfield, 1975. Magnetic susceptibility of lake sediments. Limnol. Oceanogr. 20: 687–698.Google Scholar
  47. Wanielista, M. P., Y. A. Yousef & W. M. McLellon, 1977. Nonpoint source effects on water quality. J. Wat. Pollut. Cont. Fed. 49: 441–451.Google Scholar
  48. Weibel, S. R., R. J. Anderson & R. L. Woodward, 1964. Urban land runoff as a factor in stream pollution. J. Wat. Pollut. Cont. Fed. 36: 914–924.Google Scholar
  49. Zeeb, B. A. & J. P. Smol, 1991. Paleolimnological investigation of the effects of road salt seepage on scaled chrysophytes in Fonda Lake, Michigan. J. Paleolimnol. 5: 263–266.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Anne-Marie Lott
    • 1
  • Peter A. Siver
    • 1
  • Laurence J. Marsicano
    • 1
  • Kenneth P. Kodama
    • 2
  • Robert E. Moeller
    • 2
  1. 1.Botany DepartmentConnecticut CollegeNew LondonUSA
  2. 2.Department of Earth and Environmental Sciences, 31 Williams DriveLehigh UniversityBethlehemUSA

Personalised recommendations