Astrophysics and Space Science

, Volume 227, Issue 1–2, pp 265–276 | Cite as

Solar wind-magnetosphere interaction as simulated by a 3-D em particle code

  • Ken-Ichi Nishikawa
  • Torsten Neubert
  • Oscar Buneman


We have studied the solar wind-magnetosphere interaction using a 3-D electromagnetic particle code. The results for an unmagnetized solar wind plasma streaming past a dipole magnetic field show the formation of a magnetopause and a magnetotail, the penetration of energetic particles into cusps and radiation belt and dawn-dusk asymmetries. The effects of interplanetary magnetic field (IMF) have been investigated in a similar way as done by MHD simulations. The simulation results with a southward IMF show the shrunk magnetosphere with great particle entry into the cusps and nightside magnetosphere. This is a signature of a magnetic reconnection at the dayside magnetopause. After a quasi-stable state is established with an unmagnetized solar wind we switched on a solar wind with an northward IMF. In this case the significant changes take place in the magnetotail. The waving motion was seen in the magnetotail and its length was shortened. This phenomena are consistent with the reconnections which occur at the high latitude magnetopause. In our simulations kinetic effects will determine the self-consistent anomalous resistivity in the magnetopause that causes reconnections.

Key words

Solar wind Magnetosphere IMF Magnetic Reconnection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashour-Abdalla. M. Zelenyi, L. M. Perroomian, V. and Richard, R. L.: 1991, “Consequences of magnetotail ion dynamics,”J. Geophys. Res., Vol.99, pp. 14,891–14,916Google Scholar
  2. Berchem, J. and Okuda, H.: 1990, “A two-dimensional particle simulation of the magnetopause current layer,”J. Geophys. Res., Vol.95, pp. 8133–8147Google Scholar
  3. Brecht S. H. and Ferrante, J. R.: 1991, “Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars,”J. Geophys Res., Vol.96, pp. 11,209–11,220Google Scholar
  4. Brecht, S. H. J. Lyon, S. H., Fedder, J. A. and Hain, K.: 1981, “A simulation study of East-West IMF effects on the magnetosphere,”Geophys. Res. Lett., Vol.8, pp. 397–400Google Scholar
  5. Brecht, S. H., Lyon, J. G. Fedder, J. A. and Hain, K.: 1982, “A time-dependent three-dimensional simulation of the Earth's magnetosphere: Reconnection events,”J. Geophys. Res., Vol.87, pp. 6098–8108Google Scholar
  6. Brecht, S. H. Ferrante, J. R. and Luhmann, J. G.: 1993, “Three-dimensional simulation of the solar wind interaction with Mars,”J. Geophys Res., Vol.98, pp. 1345–1357Google Scholar
  7. Buneman, O.: 1994, “TRISTAN: The 3-D, E-M Particle Code,”Computer Space Plasma Physics, Simulation Techniques and Software, edited by H. Matsumoto and Y. Omura, Terra Scientific, Tokyo, pp. 67–84Google Scholar
  8. Buneman, O., Barnes, C. W. Green, J. C. and Nielsen, D. E.: 1980, “Review: Principles and capabilities of 3-d, E-M particle simulations,”J. Comput. Phys., Vol.38, pp. 1–44Google Scholar
  9. Buneman, O. Neubert, T. and Nishikawa, K.-I.: 1992, “Solar wind-magnetosphere interaction as simulated by a 3D, EM particle code,”IEEE Trans. Plasma Sci., Vol.20, pp. 810–816Google Scholar
  10. Buneman, O. Nishikawa, K.-I. and Neubert, T.: 1994, “Solar wind-magnetosphere interaction as simulated by a 3D EM particle code,”Micro and Meso Scale Phenomena in Space Plasmas, AGU Monograph, in pressGoogle Scholar
  11. Buneman, R. Barker, R. J., Peratt, A. L., Brecht, S. H., Langdon, A. B., Lewis, H. R.: 1994, “A Tribute to Oscar Buneman—Pioneer of Plasma Simulation,”IEEE Trans. Plasma Sci., Vol.22, pp. 22–30Google Scholar
  12. Burgess, D.: 1989, “Cyclic behavior of quasi-parallel collisionless shocks,”Geophys. Res. Lett., Vol.16, pp. 345–348Google Scholar
  13. Burkhart G. R. and Chen, J.: 1991, “Differential memory in the earth's magnetotail,”J. Geophys. Res., Vol.96, pp. 14,033–14,049Google Scholar
  14. Chen J. and Palmadesso, P.: 1986, “Chaos and non-linear dynamics of single particle orbits in a magnetotail-like magnetic field,”J. Geophys. Res., Vol.91, pp. 1499–1508Google Scholar
  15. Dungey, J. W.: 1988, “Noise-free neutral sheets,”Proceedings of an International Workshop in Space Plasma, held in Potsdam, GDR, European Space Agency Special Report,ESA SP-285 Vol. II, 15-Google Scholar
  16. Elphic, R. C.: 1987, “The bowshock and magnetopause,”Rev. Geophys., Vol.25, pp. 510–522Google Scholar
  17. Fedder, J. A. and Lyon, J. G.: 1987, “The solar wind-magnetosphere-ionosphere current-voltage relationship,”Geophys. Res. Lett., Vol.14, pp. 880–882Google Scholar
  18. Fedder, J. A., Mobarry, C. M. and Lyon, J. G.: 1991, “Reconnection voltage as a function of IMF clock angle,”Geophys. Res. Lett., Vol.18, pp. 1047–1050Google Scholar
  19. Gary, S. and Sgro, A. G.: 1990, “The lower hybrid drift instability at the magnetopause,”Geophys. Res. Lett., Vol.17, pp. 909–912Google Scholar
  20. Gekelman, W. and Stenzel, R. L.: 1984, “Magnetic field line reconnection experiments 6. Magnetic turbulence,”J. Geophys. Res., Vol.89, pp. 2715–2733Google Scholar
  21. Gekelman, W. and Pfister, H.: 1988, “Experimental observations of the tearing of an electron current sheet,”Phys. Fluids, Vol.31, pp. 2017–2025Google Scholar
  22. Haerendel G. and Paschmann, G.: 1982, “Interaction of the solar wind with the dayside magnetosphere,”Magnetospheric Plasma Physics, edited by A. Nishida, Reidel Publishing Company, Dordrecht, Boston, London, pp. 49–142Google Scholar
  23. Horton W. and Tajima, T.: 1991, “Collisionless conductivity and stochastic heating of the plasma sheet in the geomagnetic tail,”J. Geophys. Res., Vol.96, pp. 15,811–15,829Google Scholar
  24. Huang, C. Y.: 1987, “Quadrennial review of the magnetotail,”Rev. Geophys., Vol.25, pp. 529–540Google Scholar
  25. Leboeuf, J. N. Tajima, T. kennel, C. F. and Dawson, J. M.: 1981, “Global simulation of the three-dimensional magnetosphere,”Geophys. Res. Lett,, Vol.8, pp. 257–260Google Scholar
  26. Lindman, E. L.: 1975, “Free-space boundary conditions for the time dependent wave equation,”J. Comp. Phys., Vol.18, pp. 66–78Google Scholar
  27. Lyons L. R. and Pridmore-Brown, D. C.: 1990, “Force balance near an X-line in a collisionless plasma,”J. Geophys. Res., Vol.95, pp. 20,903–20,909Google Scholar
  28. Mauk B. H. and Zanetti, L. J.: 1987, “Magnetospheric electric fields and currents,”Rev. Geophys., Vol.25, pp. 541–554Google Scholar
  29. Moore, K. R. Thomas, V. A. and McComas, D. J.: 1991, “Global hybrid simulation of the solar wind interaction with the dayside of Venus,”J. Geophys. Res., Vol.96, pp. 7779–7791Google Scholar
  30. Neubert, T. Miller, R. H. Buneman, O. and Nishikawa, K.-I.: 1992, “The dynamics of low-β plasma clouds as simulated by a 3-dimensional, electromagnetic particle code,”J. Geophys. Res., Vol.97, pp. 12,057–12,072Google Scholar
  31. Nishikawa, K.-I. Buneman, O. and Neubert, T.: 1994a, “New aspects of whistler waves driven by an electron beam as studied by a 3-D EM particle code,”Geophys. Res. Lett., Vol.21, pp. 1019–1022Google Scholar
  32. Nishikawa, K.-I. Sakai, J. I. Zhao, J. Neubert, T. and Buneman, O.: 1994b, “Coalescence of two current loops with a kink instability simulated by a 3-D EM particle code,”Ap. J., in pressGoogle Scholar
  33. Ogino, T.: 1986, “A three-dimensional simulation of the interaction of the solar wind with the Earth's magnetosphere: the generation of field-aligned currents,”J. Geophys. Res., Vol.91, pp. 6791–6806Google Scholar
  34. Ogino, T., Walker, R. J. Ashour-Abdalla, M. and Dawson, J. M.: 1985, “An MHD simulation of the By-dependant magnetospheric convection and field-aligned current during northward IMF,”J. Geophys. Res., Vol.90, pp. 10,835–10,842Google Scholar
  35. Ogino, T., Walker, R. J. Ashour-Abdalla, M. and Dawson, J. M.: 1986, “An MHD simulation of the effects of the interplanetary magnetic field By component on the interaction of the solar wind with the Earth's magnetosphere during southward interplanetary magnetic field,”J. Geophys. Res., Vol.91, pp. 10,029–10,045Google Scholar
  36. Ogino, T. Walker, R. J. and Ashour-Abdalla, M.: 1994, “A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of interplanetary magnetic field,”J. Geophys. Res., Vol.99, pp. 11,027–11,042Google Scholar
  37. Okuda, H.: 1991, “Numerical simulations on the magnetopause current layer,”Modeling Magnetospheric Plasma Processes, American Geophysical Union, Geophysical Monograph 62, pp. 9–16Google Scholar
  38. Okuda, H.: 1992, “Structure of the magnetopause current layer at the subsolar point,”J. Geophys. Res., Vol.97, pp. 1389–1395Google Scholar
  39. Okuda, H.: 1993, “Numerical simulation of the subsolar magnetopause current layer in the Sun-Earth meridian plane,”J. Geophys. Res., Vol.98, pp. 3953–3962Google Scholar
  40. Omidi, N., Quest, K. B. and Winske, D.: 1990, “Low Mach number parallel and quasiparallel shocks,”J. Geophys. Res., Vol.95, pp. 20,717–20,730Google Scholar
  41. Peratt, A. L., Green, J. and Nielsen, D.: 1980, “Evolution of colliding plasmas,”Phys. Rev. Lett., Vol.44, pp. 1767–1770Google Scholar
  42. Peratt, A. L.: 1986, “Evolution of the plasma universe: II. The formation of systems of galaxies,”IEEE Trans. Plasma Sci., Vol.PS-14, pp. 763–778Google Scholar
  43. Quest, K. B. 1988, “Theory and simulation of collisionless parallel shocks,”J. Geophys. Res., Vol.93, pp. 9649–9680Google Scholar
  44. Rahman, H. U., Yur, G. White, R. S. Birn, J. and Wessel, F. J.: 1991, “On the influence of the magnetization of a model solar wind on a laboratory magnetosphere,”J. Geophys. Res., Vol.96, pp. 7823–7829Google Scholar
  45. Sakai, J. I. Zhao, J. and Nishikawa, K.-I.: 1994, “Loops heating by D.C. electric current and electro- magnetic wave emissions simulated by a 3-D EM particle code,”Solar Phys., in pressGoogle Scholar
  46. Sato, T., Shimada, T. Tanaka, M. Hayashi, T. and Watanabe, K.: 1986, “Formation of twisting flux tubes on the magnetopause and solar wind particle entry into the magnetosphere,”Geophys. Res. Lett., Vol.13, pp. 801–804Google Scholar
  47. Sonnerup, B. U. O.: 1988, “On the theory of steady-state reconnection,”Comput. Phys. Commun., Vol.49, 143–159Google Scholar
  48. Thomas, V. A. and Winske, D.: 1990, “Two dimensional hybrid simulations of a curved bow shock,”Geophys. Res. Lett., Vol.17, pp. 1247–1250Google Scholar
  49. Thomas, V. A., Winske, D. and Omidi, N.: 1990, “Re-forming supercritical quasi-parallel shocks 1. One- and two-dimensional simulations,”J. Geophys. Res., Vol.95, pp. 18,809–18,819Google Scholar
  50. Villasenor J. and Buneman, O.: 1992, “Rigorous charge conservation for local electromagnetic field solvers,”Comp. Phys. Comm., Vol.69, pp. 306–316Google Scholar
  51. Walker, R. J., Ogino, T. and Ashour-Abdalla, M.: 1987, “A magnetohydrodynamic simulation of reconnection in the magnetotail during intervals of with southward interplanetary magnetic field,”Magnetotail Physics, Edited by A. T. Y Lui, Johns Hopkins University Press, Baltimore, pp. 183–190Google Scholar
  52. Walker, R. J., Ogino, T. Raeder, J., and Ashour-Abdalla, M.: 1993, “A global magnetohy-drodynamic simulation of the magnetosphere when the interplanetary magnetic field is southward: The onset of magnetotail reconnection,”J. Geophys. Res., Vol.98, pp. 17,235–17,249Google Scholar
  53. Watanabe, K. and Sato, T.: 1988, “Self-excitation of auroral arcs in a three-dimensionally coupled magnetosphere-ionosphere system,”Geophys. Res. Lett., Vol.15, pp. 717–720Google Scholar
  54. Watanabe, K. and Sato, T.: 1990, “Global simulation of the solar wind-magneto- sphere interaction: The importance of its numerical validity,”J. Geophys. Res., Vol.95, pp. 75–88Google Scholar
  55. Winglee, R. W.: 1994, “Non-MHD influences on the magnetospheric current system,”J. Geophys. Res., Vol.99, pp. 13,437–13,454Google Scholar
  56. Winske, D., Omidi, N. Quest, K. B. and Thomas, V. A.: 1990, “Re-forming supercritical quasi-parallel shocks 2. Mechanism for wave generation and front re-formation,”J. Geophys. Res., Vol.95, pp. 18,821–18,832Google Scholar
  57. Wu, C. C. Walker, R. J. and Dawson, J. M.: 1981, “A three-dimensional MHD model of the Earth's magnetosphere,”Geophys. Res. Lett., Vol.8, pp. 523–526Google Scholar
  58. Zhao, J. Nishikawa, K.-I. Sakai, J. I. and Neubert, T.: 1994a, “Study of nonlinear Alfvén waves in an electron-positron plasma with 3-D EM particle code,”Phys. Plasmas, Vol.1, pp. 103–108Google Scholar
  59. Zhao, J. Sakai, J. I. Nishikawa, K.-I. and Neubert, T.: 1994b, “Relativistic particle acceleration in an electron-positron plasma with a relativistic electron beam,”Phys. Plasmas, in pressGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Ken-Ichi Nishikawa
    • 1
  • Torsten Neubert
    • 2
  • Oscar Buneman
    • 3
  1. 1.Department of Physics and AstronomyThe University of IowaIowa CityUSA
  2. 2.Space Physics Research LaboratoryThe University of MichiganAnn ArborUSA
  3. 3.STAR Laboratory, Department of Electrical EngineeringStanford UniversityStanfordUSA

Personalised recommendations