Astrophysics and Space Science

, Volume 227, Issue 1–2, pp 187–198 | Cite as

Interstellar neutral hydrogen filaments at high galactic latitudes and the bennett pinch

  • Gerrit L. Verschuur


Observed properties of interstellar neutral hydrogen filaments suggest the presence of the Bennett pinch as described by the Carlqvist relationship with rotation around the filament axes included. A brief summary is first given of three ways in which a filament model for interstellar “cloud” structure was tested. Preliminary results from highresolution HI mapping of gas and dust in an apparent HI “cloud” indicate that the neutral gas and dust within and around its boundary is itself highly filamentary. An attempt to detect magnetic fields in this and similar features using the Zeeman effect technique at the 21-cm wavelength of interstellar neutral hydrogen set upper limits of a fewµG. In contrast, the strength of the toroidal magnetic field expected from the examination of the Carlqvist relationship is of order 5µG, which would be produced by a current of 1.4 · 1013 A. Zeeman effect technology is at present not able to detect toroidal magnetic fields of this order at the edge of barely resolved HI filaments. Nevertheless, currently available high-resolution HI data suggest that interstellar filament physics should take into account the role of currents and pinches for creating and stabilizing the structures.


Hydrogen Magnetic Field Dust Neutral Hydrogen Zeeman Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulanger, F., Perault, M.: 1988,Astrophys. J. Vol.330, pp. 964Google Scholar
  2. Carlqvist, P.: 1988,Astrophys. Space Sci. Vol.144, pp. 73Google Scholar
  3. Carlqvist, P., Gahm, G. F.: 1992,IEEE Trans. Plasma Sci. Vol.20, pp. 867Google Scholar
  4. Colomb, F. R., Poppel, W. G. L., Heiles, C.: 1980,Astron. and Astrophys. Vol.40, pp. 47Google Scholar
  5. Hartmann, L.: 1994, Ph.D. Thesis, Leiden University(to be published by Cambridge Univ. Press, 1995) Google Scholar
  6. Heiles, C.: 1989,Astrophys. J. Vol.336, pp. 808Google Scholar
  7. Kahn, F.D., Dyson, J.E.: 1965,ARA&A Vol.3, pp. 47Google Scholar
  8. Peratt, A. L.: 1992,Physics of the Plasma Universe, Springer-Verlag, p.59Google Scholar
  9. Reynolds, R. J.: 1983,Astrophys. J. Vol.268, pp. 698Google Scholar
  10. Troland, T. H., Heiles, C.: 1982,Astrophys. J. Vol.260, pp. L19Google Scholar
  11. Verschuur, G.: 1973,Astrophys. J. Vol.78, pp. 573Google Scholar
  12. Verschuur, G.: 1974a,Astrophys. J. Supplement Vol.27, pp. 65Google Scholar
  13. Verschuur, G.: 1974b,Astrophys. J. Supplement Vol.27, pp. 283Google Scholar
  14. Verschuur, G.: 1991a,Astrophys. Space Sci. Vol.185, pp. 137Google Scholar
  15. Verschuur, G.: 1991b,Astrophys. Space Sci. Vol.185, pp. 305Google Scholar
  16. Verschuur, G.: 1994a,b,Astrophys. J. (submitted)Google Scholar
  17. Verschuur, G.: 1995c,Astrophys. J. (in preparation)Google Scholar
  18. Verschuur, G. L., Rickard, L. J, Verter, F., Pound, M., Leisawitz, D.: 1992,Astrophys. J Vol.390, pp. 514Google Scholar
  19. Verschuur, G. L., Magnani, L.: 1994,Astronomical. J Vol.107, pp. 287Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Gerrit L. Verschuur
    • 1
  1. 1.Physics DepartmentRhodes CollegeMemphisUSA

Personalised recommendations