Advertisement

Solar Physics

, Volume 154, Issue 1, pp 69–96 | Cite as

The influence of line-tying on coronal perturbations in a gravitationally stratified equilibrium

  • R. A. M. Van der Linden
  • A. W. Hood
  • J. P. Goedbloed
Article

Abstract

We study the influence of gravitational stratification of the solar atmosphere on the stability of coronal magnetic structures. In particular we question whether the (presumably stabilizing) influence of the anchoring of the magnetic field lines in the solar photosphere (‘line-tying’) can be adequately modelled by either ‘rigid wall’ or ‘flow-through’ boundary conditions on the coronal perturbations, as is commonly done. Using the ideal MHD model without gravitational effects,inertial line-tying alone cannot lead to afull stabilization, as marginal stability cannot be crossed by including only the rapid density increase at the photospheric interface.

We demonstrate, using the (localized) ballooning ordering, that when gravity and the corresponding intrinsically stable stratification of the photosphere is included, the points of marginal stability are no longer independent of the density. The sharp increase in density and associated decrease in pressure scale height at the solar surface leads to a stabilizing effect, which may result in a full transition from unstable to stable modes. Gravitational effects imply that rigid wall conditions represent photospheric field line anchoring better than flow-through conditions for determining the stability or modes of oscillation of a coronal equilibrium. Applying rigid wall conditions gives good approximations for frequencies that are much larger than photospheric time scales when the plasma is stable, and growth rates when the plasma is unstable. At the same time we show however that near marginal stability, even when gravity is included, rigid wall conditions are still violated.

Keywords

Field Line Magnetic Field Line Solar Atmosphere Marginal Stability Gravitational Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, I. B., Friedman, E. A., Kruskal, M. D., and Kulsrud, R. M.: 1958,Proc Roy. Soc. A244, 17.Google Scholar
  2. Cargill, P., Hood, A. W., and Migliuolo, S.: 1986,Astrophys. J. 309, 502.Google Scholar
  3. Craig, I. J. D. and McClymont, A. N.: 1987,Astrophys. J. 318, 421.Google Scholar
  4. Connor, J. W., Hastie, R. J., and Taylor, J. B.: 1979Proc. Roy. Soc. London A365, 1.Google Scholar
  5. Einaudi, G. and Van Hoven, G.: 1981,Phys. Fluids 24, 1092.Google Scholar
  6. Freidberg, J. P.: 1987,Ideal Magnetohydrodynamics, Plenum Press, New York.Google Scholar
  7. Goedbloed, J. P.: 1983,Lecture Notes on Ideal Magnetohydrodynamics, Rijnhuizen Report 83–145.Google Scholar
  8. Goedbloed, J. P. and Sakanaka, P. H.: 1974,Phys. Fluids 17, 908.Google Scholar
  9. Goedbloed, J. P., Halberstadt, G., and Van der Linden, R. A. M.: 1991,Ann. Geophys. Suppl. 9 (EGS), C561.Google Scholar
  10. Hardie, I. S., Hood, A. W., and Allen, H. R.: 1991,Solar Phys. 133, 313.Google Scholar
  11. Hassam, A. B.: 1990,Astrophys. J. 348, 778.Google Scholar
  12. Hood, A. W.: 1986a,Solar Phys. 105, 307.Google Scholar
  13. Hood, A. W.: 1986b,Solar Phys. 103, 329.Google Scholar
  14. Hood, A. W., Van der Linden, R. A. M., and Goossens, M.: 1989,Solar Phys. 120, 261.Google Scholar
  15. Raadu, M.: 1972,Solar Phys. 22, 425.Google Scholar
  16. Rosner, R., Low, B. C., and Holzer, T. E.: 1984, in P. Sturrock, T. Holzer, D. Mihalas, and R. Ulrich (eds.),Physics of the Sun, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  17. Schindler, K., Birn, J., and Janicke, L.: 1983,Solar Phys. 87, 103.Google Scholar
  18. Van der Linden, R. A. M., Goossens, M., and Hood, A. W.: 1992,Solar Phys. 140, 317.Google Scholar
  19. Zweibel, E. G.: 1985,Geophys. Astrophys. Fluid Dyn. 32, 317.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. A. M. Van der Linden
    • 1
  • A. W. Hood
    • 1
  • J. P. Goedbloed
    • 2
  1. 1.University of St. AndrewsSt. AndrewsScotland
  2. 2.FOM-Instituut voor Plasma-FysicaBE NieuwegeinThe Netherlands

Personalised recommendations