International Journal of Theoretical Physics

, Volume 34, Issue 8, pp 1525–1531 | Cite as

Compatibility in D-posets

  • František Kôpka


In this paper the Boolean D-poset is defined and it is showed that every subset of a Boolean D-poset is a compatible set.


Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bush, P., Lahti, P. J., and Mittelstaedt, P. (1991).The Quantum Theory of Measurement, Springer-Verlag, Berlin.Google Scholar
  2. Chang, C. C. (1959). Algebraic analysis of many valued logics,Transactions of the American Mathematical Society.88, 467–490.Google Scholar
  3. Chovanec, F. (1993). Compatibility problem in quasi-orthocomplemented posets,Mathematica Slovaca,43(1), 89–103.Google Scholar
  4. Dvurečenskij, A. (n.d.). Tensor product of difference posets, to appear.Google Scholar
  5. Dvurečenskij, A., and Chovanec, F. (1988). Fuzzy quantum spaces and compatibility,International Journal of Theoretical Physics,27, 1069–1082.Google Scholar
  6. Foulis, D. J., Greechie, R. J., and Rüttimann, G. T. (1992). Filters and supports in orthoalgebras,International Journal of Theoretical Physics,31, 787–807.Google Scholar
  7. Hedlíková, J., and Pulmannová, S. (n.d.). Generalized difference posets and orthoalgebras, submitted.Google Scholar
  8. Kôpka, F. (1992). D-posets of fuzzy sets,Tatra Mountains Mathematical Publications,1, 83–89.Google Scholar
  9. Kôpka, F. (n.d.-a). Compatibility in D-posets of fuzzy sets,Tatra Mountains Mathematical Publications, to appear.Google Scholar
  10. Kôpka, F. (n.d.-b). Compatible sets in D-posets, submitted.Google Scholar
  11. Kôpka, F., and Chovanec, F. (1994). D-posets,Mathematica Slovaca,44(1), 21–34.Google Scholar
  12. Neubrunn, T., and Pulmannová, S. (1983). On compatibility in quantum logics,Acta Mathematica Universitas Comenianae,XLII–XLIII, 153–168.Google Scholar
  13. Pták, P., and Pulmannová, S. (1991). Orthomodular structures as quantum logics, VEDA, Bratislava, and Kluwer, Dordrecht.Google Scholar
  14. Randall, C., and Foulis, D. (1981). Empirical logic and tensor products, inInterpretations and Foundations of Quantum Theory, Vol. 5, H. Neumann, ed., Wissenschaftsverlag, Bibligraphisches Institut, Manheim, pp. 9–20.Google Scholar
  15. Riečan, B. (1988). A new approach to some notions of statistical quantum mechanics,BUSEFAL 35, 4–6.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • František Kôpka
    • 1
  1. 1.Department of MathematicsMilitary AcademyLiptovský MikulášSlovakia

Personalised recommendations