International Journal of Theoretical Physics

, Volume 34, Issue 8, pp 1221–1229 | Cite as

Quantum observables in classical frameworks

  • E. G. Beltrametti
  • S. Bugajski
Article

Abstract

A procedure of classical extension of a theory is worked out on the basis of a natural generalization of the notion of observable, the states of the extended theory being the probability measures on the pure states of the original one. Such a classical extension applies to quantum theory, and the qualifying features of quantum observables are preserved in the extended model.

Keywords

Field Theory Elementary Particle Quantum Field Theory Probability Measure Pure State 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S. T., and Prugovecki, E. (1977).Journal of Mathematical Physics,18, 219–228.Google Scholar
  2. Amann, A. (1993). The quantum mechanical measurement process in the thermodinamical formalism, inSymposium on the Foundations of Modern Physics, 1993, P. Busch, P. Lahti, and P. Mittelstaedt, eds., World Scientific, Singapore.Google Scholar
  3. Beltrametti, E. G., and Bugajski, S. (1993).International Journal of Theoretical Physics,32, 2235–2244.Google Scholar
  4. Beltrametti, E. G., and Bugajski, S. (1994). A classical extension of quantum mechanics, to be published.Google Scholar
  5. Bugajski, S. (1992).International Journal of Theoretical Physics,30, 961–971.Google Scholar
  6. Bugajski, S. (1993).International Journal of Theoretical Physics,32, 969–977.Google Scholar
  7. Cassinelli, G., and Lahti, P. J. (1993).Journal of Mathematical Physics,34, 5468–5475.Google Scholar
  8. Davies, E. B. (1976).Quantum Theory of Open Systems, Academic Press, New York.Google Scholar
  9. Ghirardi, G. C., Rimini, A., and Weber, T. (1976).Nuovo Cimento,36, 97–118.Google Scholar
  10. Holevo, A. S. (1982).Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam.Google Scholar
  11. Mielnik, B. (1974).Communication in Mathematical Physics,37, 221–256.Google Scholar
  12. Misra, B. (1974). InPhysical Reality and Mathematical Description, C. P. Enz and J. Mehra, eds., Reidel, Dordrecht, pp. 455–476.Google Scholar
  13. Singer, M., and Stulpe, W. (1992).Journal of Mathematical Physics,33, 131–142.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • E. G. Beltrametti
    • 1
    • 2
  • S. Bugajski
    • 3
  1. 1.Department of PhysicsUniversity of GenoaItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di GenovaGenoaItaly
  3. 3.Institute of PhysicsUniversity of SilesiaKatowicePoland

Personalised recommendations