Skip to main content
Log in

Abstract

We share with Foulis and Randall the evangel that it is not orthomodular posets or the like, but manuals of operations that are of primary importance in the foundations of the empirical sciences. In sharp contrast to them, we regard an operation not as a set of possible outcomes, but as a complete Boolean algebra of observable events, which we adopt, following the lines of Davis and of Takeuti, as a building block of our empirical set theory. Just as a smooth manifold is covered by open subsets of a Euclidean space interconnected by smooth mappings, our empirical set theory is covered by the Scott-Solovay universesV (B) over complete Boolean algebrasB interconnected by geometric morphisms. Using the nomenclature of topos theory, our empirical set theory is a subcategory of the categoryBIop of Boolean localic toposes and geometric morphisms. It is shown that in this set theory observables can be identified with real numbers. This is the first step of formal development of Davis' ambitious program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, J. L. (1988).Toposes and Local Set Theories, Oxford University Press, Oxford.

    Google Scholar 

  • Davis, M. (1977).International Journal of Theoretical Physics,16, 867–874.

    Google Scholar 

  • Dixmier, J. (1981).Von Neumann Algebras, North-Holland, Amsterdam.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1972).Journal of Mathematical Physics,13, 1667–1675.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1974a). The empirical logic approach to the physical sciences, inLecture Notes in Physics, Vol. 29, Springer-Verlag, Berlin, pp. 230–249.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1974b).Synthese,29, 81–111.

    Google Scholar 

  • Foulis, D. J., and Randall, C. H. (1978). Manuals, morphisms, and quantum mechanics, inMathematical Foundations of Quantum Theory, A. R. Marlow, ed., Academic Press, New York, pp. 105–126.

    Google Scholar 

  • Goldblatt, R. (1979).Topoi, North-Holland, Amsterdam.

    Google Scholar 

  • Gudder, S. P. (1988).Quantum Probability, Academic Press, San Diego, California.

    Google Scholar 

  • Jech, T. (1978).Set Theory, Academic Press, New York.

    Google Scholar 

  • Kolmogorov, A. N. (1956).Foundations of the Theory of Probability, 2nd ed., Chelsea, New York.

    Google Scholar 

  • Koppelberg, S. (1989).Handbook of Boolean Algebras, Vol. 1, North-Holland, Amsterdam.

    Google Scholar 

  • MacLane, S. (1971).Categories for the Working Mathematician, Springer-Verlag, New York.

    Google Scholar 

  • MacLane, S., and Moerdijk, I. (1992).Sheaves in Geometry and Logic, Springer-Verlag, New York.

    Google Scholar 

  • Manes, E. G. (1976).Algebraic Theories, Springer-Verlag, New York.

    Google Scholar 

  • Nishimura, H. (1992).International Journal of Theoretical Physics,31, 855–869.

    Google Scholar 

  • Nishimura, H. (1993).International Journal of Theoretical Physics,32, 443–488.

    Google Scholar 

  • Pták, P., and Pulmannová, S. (1991).Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht.

    Google Scholar 

  • Randall, C. H. (1966). A mathematical foundation for empirical science, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York.

    Google Scholar 

  • Randall, C. H., and Foulis, D. J. (1973).Journal of Mathematical Physics,14, 1472–1480.

    Google Scholar 

  • Randall, C. H., and Foulis, D. J. (1976). A mathematical setting for inductive reasoning, inFoundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, Vol. III, W. L. Harper and C. A. Hooker, eds., Reidel, Dordrecht, pp. 169–205.

    Google Scholar 

  • Randall, C. H., and Foulis, D. J. (1979). The operational approach to quantum mechanics, inPhysical Theories as Logico-Operational Structure, C. A. Hooker, ed., Reidel, Dordrecht, pp. 167–201.

    Google Scholar 

  • Segal, I. E. (1951).American Journal of Mathematics,73, 275–313.

    Google Scholar 

  • Sikorski, R. (1969).Boolean Algebras, 3rd ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Stout, L. N. (1979).Manuscripta Mathematica,28, 379–403.

    Google Scholar 

  • Takeuti, G. (1978).Two Applications of Logic to Mathematics, Iwanami, Tokyo, and Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Takeuti, G. (1980).Intuitionistic Set Theory, Kinokuniya, Tokyo [in Japanese].

    Google Scholar 

  • Takeuti, G. (1981a). Logic and set theory, inModern Logic—A Survey, E. Agazzi, ed., Reidel, Dordrecht, pp. 169–171.

    Google Scholar 

  • Takeuti, G. (1981b). Quantum set theory, inCurrent Issues in Quantum Logic, E. G. Beltrametti and B. C. van Fraassen, eds., Plenum Press, New York, pp. 303–322.

    Google Scholar 

  • Takeuti, G. (1983). Quantum logic and quantization, inProceedings International Symposium on the Foundations of Quantum Mechanics, S. Kamefuchiet al., eds., Tokyo, pp. 256–260.

  • Takeuti, G., and Zaring, W. M. (1973).Axiomatic Set Theory, Springer-Verlag, New York.

    Google Scholar 

  • Tomita, M. (1952).Memoirs of the Faculty of Science, Kyūsyū University, Series A,7, 51–60.

    Google Scholar 

  • Varadarajan, V. S. (1962).Communications in Pure and Applied Mathematics,15, 189–217.

    Google Scholar 

  • Varadarajan, V. S. (1968).Geometry of Quantum Theory, Vol. I, Van Nostrand, Princeton, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, H. Empirical set theory. Int J Theor Phys 32, 1293–1321 (1993). https://doi.org/10.1007/BF00675196

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00675196

Keywords

Navigation