International Journal of Theoretical Physics

, Volume 33, Issue 10, pp 2019–2029 | Cite as

Newq-derivative andq-logarithm

  • Ki-Soo Chung
  • Won-Sang Chung
  • Sang-Tack Nam
  • Hye-Jung Kang


In this paper a newq-derivative is proposed and its properties are discussed. We defineq-addition and study its axiomatic properties. Theq-exponents andq-logarithmic function are introduced and their algebraic structure discussed.


Field Theory Elementary Particle Quantum Field Theory Algebraic Structure Axiomatic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arik, M., and Coon, D. (1976).Journal of Mathematical Physics,17, 524.Google Scholar
  2. Baxter, R. (1982).Exactly Solved Models in Statistical Mechanics, Academic Press, New York.Google Scholar
  3. Biedenharn, L. (1989).Journal of Physics A,22, L873.Google Scholar
  4. Bogoliubov, N., Izergin, A., and Korepin, V. (1985). InSpringer Lecture Notes in Physics, Vol. 242, Springer, Berlin, p. 220.Google Scholar
  5. Bracken, A., McAnally, D., Zhang, R., and Gould, M. (1991).Journal of Physics A,24, 1379.Google Scholar
  6. Bullough, R., Pilling, D., and Timonen, J. (1988). InSolitons, M. Lakashmanan, ed., Springer, Berlin, p. 250.Google Scholar
  7. Bullough, R.,et al. (1990). InNATO, ASI Series B, Vol. 245, Plenum Press, New York, p. 47.Google Scholar
  8. De Vega, H., Eichenherr, H., and Maillet, J. (1984).Nuclear Physics B,240, 377.Google Scholar
  9. Doebner, H., and Henning, J., eds. (1990).Quantum Groups, Springer, Berlin.Google Scholar
  10. Drinfel'd, V. (1986). InProceedings International Conference of Mathematicians, Berkeley.Google Scholar
  11. Faddeev, L. (1981).Soviet Scientific Reviews C: Mathematics,1, 107.Google Scholar
  12. Faddeev, L. (1984). InLes Houches XXXIX, J. Zuber and R. Stora, eds., Elsevier, Amsterdam.Google Scholar
  13. Gerdjikov, V., Ivanov, M., and Kulish, P. (1984).Journal of Mathematical Physics,25, 25.Google Scholar
  14. Gray, R., and Nelson, C. (1990).Journal of Physics A,23, L945.Google Scholar
  15. Jackson, F. (1908).Transactions of the Royal Society,46, 253.Google Scholar
  16. Jackson, F. (1910).Quarterly Journal of Mathematics,41, 193.Google Scholar
  17. Jackson, F. (1951).Quarterly Journal of Mathematics,2, 1.Google Scholar
  18. Jimbo, M. (1985).Letters in Mathematical Physics,10, 63.Google Scholar
  19. Kulish, P. (1981).Letters in Mathematical Physics,5, 191.Google Scholar
  20. Kulish, P., and Damaskinsky, E. (1990).Journal of Physics A,23, L415.Google Scholar
  21. Kulish, P., and Reshetikhin, N. (1983).Journal of Soviet Mathematics,23, 2435.Google Scholar
  22. Kuryshkin, V. (1980).Annales Fondation Louis de Broglie,5, 111.Google Scholar
  23. Macfarlane, A. (1989).Journal of Physics A,22, 4581.Google Scholar
  24. Sklynin, K. (1982).Journal of Soviet Mathematics,19, 1532.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Ki-Soo Chung
    • 1
  • Won-Sang Chung
    • 1
  • Sang-Tack Nam
    • 1
  • Hye-Jung Kang
    • 1
  1. 1.Theory Group, Department of Physics, College of Natural SciencesGyeongsang National UniversityJinjuKorea

Personalised recommendations