International Journal of Theoretical Physics

, Volume 32, Issue 11, pp 2099–2124 | Cite as

Null tetrad formulation of non-Abelian dyons

  • P. S. Bisht
  • O. P. S. Negi
  • B. S. Rajput
Article

Abstract

Starting with a brief description of dyons and gravito-dyons, combined field equations and the equation of motion for generalized electromagnetic and generalized gravito-Heavisidian fields are derived in a manifestly covariant way. A non-Abelian gauge theory of dyons and gravito-dyons is described in terms of a generalized Yang-Mills potential, field strengths, and generalized field equations each carrying electric and magnetic constituents. A null tetrad formulation of a generalized Yang-Mills potential and field strength of dyons is discussed in detail in terms of symmetric spinors and spin coefficients. Generalized Yang-Mills field equations of dyons are rewritten in terms of null tetrad notation, and dyon solutions of source-free Dirac equations are obtained.

Keywords

Field Theory Elementary Particle Gauge Theory Quantum Field Theory Field Strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisht, P. S., Negi, O. P. S., and Rajput, B. S. (1990).Indian Journal of Pure and Applied Physics,28, 157.Google Scholar
  2. Bisht, P. S., Negi, O. P. S., and Rajput, B. S. (1991a).Progress of Theoretical Physics,85, 157.Google Scholar
  3. Bisht, P. S., Negi, O. P. S., and Rajput, B. S. (1991b).Nuovo Cimento,104A, 337.Google Scholar
  4. Cabibbo N., and Ferrari, E. (1962).Nuovo Cimento,23, 1147.Google Scholar
  5. Cabrera, B. (1982).Physical Review Letters,48, 1378.Google Scholar
  6. Callan, C. G. (1982).Physical Review D,26, 2058.Google Scholar
  7. Cantani, D. D. (1980).Nuovo Cimento B,60, 67.Google Scholar
  8. Carmeli, M. (1977a).Group Theory and General Relativity, McGraw-Hill, New York.Google Scholar
  9. Carmeli, M. (1977b).Physics Letters B,68, 463.Google Scholar
  10. Carmeli, M. (1982).Classical Fields, Wiley-Interscience, New York.Google Scholar
  11. Carmeli, M., and Huleihil, Kh. (1984). InDifferential Geometry Methods in Mathematical Physics, S. Stemberg, ed., Riedel, Dordrecht, Holland, pp. 145–159.Google Scholar
  12. Carmeli, M., Huleihil, Kh., and Leibowitz, E. (1989).Gauge Fields, World Scientific, Singapore.Google Scholar
  13. Cho, Y. M. (1980).Physical Review D,21, 1080.Google Scholar
  14. Craigie, N. (1986).Theory and Detection of Magnetic Monopoles in Gauge Theories, World Scientific, Singapore.Google Scholar
  15. Dirac, P. A. M. (1931).Proceedings of the Royal Society of London A,133, 60.Google Scholar
  16. Fairbank, Rue L. A., Philliphs, J. D., and Laranej, C. S. (1981).Physical Review Letters,46, 967.Google Scholar
  17. Georgi, H., and Glashow, S. L. (1974).Physical Review Letters,32, 438.Google Scholar
  18. Goldhaber, A. S. (1976).Physical Review Letters,36, 1122.Google Scholar
  19. Julia, B., and Zee, A. (1975).Physical Review D,11, 2227.Google Scholar
  20. Newmann, E. T., and Penrose, R. (1962).Journal of Mathematical Physics,3, 566.Google Scholar
  21. Pantaleone, J. (1963).Nuclear Physics B,219, 367.Google Scholar
  22. Polyakov, A. M. (1974).JETP Letters,20, 194.Google Scholar
  23. Rajput, B. S. (1982).Lettere al Nuovo Cimento,35, 205.Google Scholar
  24. Rajput B. S. (1984).Journal of Mathematical Physics,25, 351.Google Scholar
  25. Rajput, B. S., and Gunwant, R. (1989).Indian Journal of Pure and Applied Physics,27, 1.Google Scholar
  26. Rajput, B. S., and Kumar, S. R. (1983).Indian Journal of Pure and Applied Physics,21, 25.Google Scholar
  27. Rajput, B. S., and Prakash Om (1978).Indian Journal of Pure and Applied Physics,16, 593.Google Scholar
  28. Rajput, B. S., Kumar, S. R., and Negi, O. P. S. (1982).Lettere al Nuovo Cimento,34, 180.Google Scholar
  29. Rajput, B. S., Bhakuni, D. S., and Negi, O. P. S. (1983a).Lettere al Nuovo Cimento,36, 57.Google Scholar
  30. Rajput, B. S., Kumar, S. R., and Negi, O. P. S. (1983b).Indian Journal of Pure and Applied Physics,21, 638.Google Scholar
  31. Rajput, B. S., and Gunwant, R., and Negi, O. P. S. (1984).Lettere al Nuovo Cimento,41, 21.Google Scholar
  32. Rajput, B. S., Kumar, S. R., and Negi, O. P. S. (1985).Indian Journal of Pure and Applied Physics,23, 422.Google Scholar
  33. Rajput, B. S., Ajay Kumar, D., and Negi, O. P. S. (1986).Europhysics Letters,1, 381.Google Scholar
  34. Rajput, B. S., Rana, J. M. S., and Negi, O. P. S. (1988).Pramana,31, 469.Google Scholar
  35. Rubakov, V. A. (1982).Soviet Physics JETP,48, 1148.Google Scholar
  36. Schwinger, J. (1969).Science,165, 757.Google Scholar
  37. 't Hooft, G. (1974).Nuclear Physics B,79, 276.Google Scholar
  38. 't Hooft, G. (1976).Nuclear Physics B,105, 538.Google Scholar
  39. 't Hooft, G. (1981).Nuclear Physics B,190, 455.Google Scholar
  40. Witten, E. (1979).Physics Letters B,86, 283.Google Scholar
  41. Wu, T. T., and Yang, C. N. (1969). InProperties of Matter under Unusual Conditions, H. Mark and S. Fernbach, eds., Interscience, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • P. S. Bisht
    • 1
  • O. P. S. Negi
    • 1
  • B. S. Rajput
    • 2
  1. 1.Department of PhysicsKumaun UniversityAlmoraIndia
  2. 2.Department of PhysicsKumaun UniversityNainitalIndia

Personalised recommendations